ON ZERO-DIVISORS IN SKEW INVERSE LAURENT SERIES OVER NONCOMMUTATIVE RINGS

被引:13
作者
Alhevaz, A. [1 ]
Kiani, D. [1 ,2 ]
机构
[1] Amirkabir Univ Technol, Dept Pure Math, Fac Math & Comp Sci, Tehran Polytech, Tehran, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
关键词
Diameter; Girth; McCoy ring; Skew inverse Laurent series ring; Zero-divisor graph; MCCOY CONDITION; COMMUTATIVE RINGS; POWER-SERIES; EXTENSIONS; GRAPHS; DIAMETER; IDEALS;
D O I
10.1080/00927872.2012.716119
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present note, we continue to study zero-divisor properties of general skew inverse Laurent series rings R((x(-1); sigma, delta)), where R is an associative ring equipped with an automorphism sigma and a sigma-derivation delta. Extending the results of a large number of papers on the McCoy property for ordinary and skew polynomial rings, we study a version of the McCoy property for general skew inverse Laurent series extensions. We obtain some necessary or sufficient conditions for a ring to be (sigma, delta)-SILS McCoy and prove that this property is preserved under a number of ring extensions. In particular, it passes to certain subrings of the (skew-)upper triangular matrix rings. In relation with this work and as an application of (sigma, delta)-SILS McCoy rings, we investigate the interplay between the ring-theoretical properties of a general skew inverse Laurent series ring R((x(-1); sigma, delta)) and the graph-theoretical properties of its zero-divisor graph (Gamma) over bar (R((x(-1); sigma, delta))).
引用
收藏
页码:469 / 487
页数:19
相关论文
共 36 条
[1]   ZERO-DIVISOR GRAPHS OF ORE EXTENSION RINGS [J].
Afkhami, M. ;
Khashyarmanesh, K. ;
Khorsandi, M. R. .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2011, 10 (06) :1309-1317
[2]   Zero-divisor graphs of non-commutative rings [J].
Akbari, S ;
Mohammadian, A .
JOURNAL OF ALGEBRA, 2006, 296 (02) :462-479
[3]   RADICALS OF SKEW INVERSE LAURENT SERIES RINGS [J].
Alhevaz, A. ;
Kiani, D. .
COMMUNICATIONS IN ALGEBRA, 2013, 41 (08) :2884-2902
[4]  
Alhevaz A., 2014, J ALGEBRA APPL, V13
[5]  
Anderson D.F., 2011, Commutative Algebra: Noetherian and Non-Noetherian Perspectives, P23
[6]   On the diameter and girth of a zero-divisor graph [J].
Anderson, David F. ;
Mulay, S. B. .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2007, 210 (02) :543-550
[7]   BECK COLORING OF A COMMUTATIVE RING [J].
ANDERSON, DD ;
NASEER, M .
JOURNAL OF ALGEBRA, 1993, 159 (02) :500-514
[8]   Zero-divisor graphs, von Neumann regular rings, and Boolean algebras [J].
Anderson, DF ;
Levy, R ;
Shapiro, J .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2003, 180 (03) :221-241
[9]   The zero-divisor graph of a commutative ring [J].
Anderson, DF ;
Livingston, PS .
JOURNAL OF ALGEBRA, 1999, 217 (02) :434-447
[10]  
[Anonymous], 2001, GRADUATE TEXTS MATH