Electromechanical imaging of biomaterials by scanning probe microscopy

被引:45
作者
Rodriguez, BJ
Kalinin, SV [1 ]
Shin, J
Jesse, S
Grichko, V
Thundat, T
Baddorf, AP
Gruverman, A
机构
[1] Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA
[2] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA
[3] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA
[4] N Carolina State Univ, Dept Biochem, Raleigh, NC 27695 USA
[5] Oak Ridge Natl Lab, Div Life Sci, Oak Ridge, TN 37831 USA
[6] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA
基金
美国国家科学基金会;
关键词
scanning probe microscopy; piezoresponse force microscopy; nanoscale; piezoelectricity; calcified tissues; connective tissues;
D O I
10.1016/j.jsb.2005.10.008
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The majority of calcified and connective tissues possess complex hierarchical structure spanning the length scales from nanometers to millimeters. Understanding the biological functionality of these materials requires reliable methods for structural imaging on the nano-scale. Here, we demonstrate an approach for electromechanical imaging of the structure of biological samples on the length scales from tens of microns to nanometers using piezoresponse force microscopy (PFM), which utilizes the intrinsic piezoelectricity of biopolymers such as proteins and polysaccharides as the basis for high-resolution imaging. Nanostructural imaging of a variety of protein-based materials, including tooth, antler, and cartilage, is demonstrated. Visualization of protein fibrils with sub-10 nm spatial resolution in a human tooth is achieved. Given the near-ubiquitous presence of piezoelectricity in biological systems, PFM is suggested as a versatile tool for micro- and nanostructural imaging in both connective and calcified tissues. (C) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:151 / 159
页数:9
相关论文
共 42 条
[1]   PIEZOELECTRIC PROPERTIES OF DRY AND WET BONE [J].
ANDERSON, JC ;
ERIKSSON, C .
NATURE, 1970, 227 (5257) :491-&
[2]  
BASSETT CAL, 1968, CALC TISS RES, V1, P252
[3]  
Bazhenov V.A.e., 1961, Piezoelectric properties of wood
[4]   Twisted plywood pattern of collagen fibrils in teleost scales: An X-ray diffraction investigation [J].
Bigi, A ;
Burghammer, M ;
Falconi, R ;
Koch, MHJ ;
Panzavolta, S ;
Riekel, C .
JOURNAL OF STRUCTURAL BIOLOGY, 2001, 136 (02) :137-143
[5]   Spatial mapping of collagen fibril organisation in primate cornea - an X-ray diffraction investigation [J].
Boote, C ;
Dennis, S ;
Meek, K .
JOURNAL OF STRUCTURAL BIOLOGY, 2004, 146 (03) :359-367
[6]  
Bromage Timothy G., 2003, Anatomical Record, V274B, P157, DOI 10.1002/ar.b.10031
[7]   Complementary information on bone ultrastructure from scanning small angle X-ray scattering and Fourier-transform infrared microspectroscopy [J].
Camacho, NP ;
Rinnerthaler, S ;
Paschalis, EP ;
Mendelsohn, R ;
Boskey, AL ;
Fratzl, P .
BONE, 1999, 25 (03) :287-293
[8]   OSTEONAL STRUCTURE BETTER PREDICTS TENSILE-STRENGTH OF HEALING BONE THAN VOLUME FRACTION [J].
CLAES, LE ;
WILKE, HJ ;
KIEFER, H .
JOURNAL OF BIOMECHANICS, 1995, 28 (11) :1377-1390
[9]   Nanoscale reconstruction of surface crystallography from three-dimensional polarization distribution in ferroelectric barium-titanate ceramics [J].
Eng, LM ;
Güntherodt, HJ ;
Schneider, GA ;
Köpke, U ;
Saldaña, JM .
APPLIED PHYSICS LETTERS, 1999, 74 (02) :233-235
[10]  
Fratzl P, 1996, CONNECT TISSUE RES, V35, P9