DeepSense: a Unified Deep Learning Framework for Time-Series Mobile Sensing Data Processing

被引:447
作者
Yao, Shuochao [1 ]
Hu, Shaohan [2 ]
Zhao, Yiran [1 ]
Zhang, Aston [1 ]
Abdelzaher, Tarek [1 ]
机构
[1] Univ Illinois, Urbana, IL 61801 USA
[2] IBM Res, Yorktown Hts, NY USA
来源
PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'17) | 2017年
基金
美国国家科学基金会;
关键词
Deep Learning; Mobile Computing; Mobile Sensing; Internet of Things; Tracking; Activity Recognition; User Identification;
D O I
10.1145/3038912.3052577
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Mobile sensing and computing applications usually require time-series inputs from sensors, such as accelerometers, gyroscopes, and magnetometers. Some applications, such as tracking, can use sensed acceleration and rate of rotation to calculate displacement based on physical system models. Other applications, such as activity recognition, extract manually designed features from sensor inputs for classification. Such applications face two challenges. On one hand, on-device sensor measurements are noisy. For many mobile applications, it is hard to find a distribution that exactly describes the noise in practice. Unfortunately, calculating target quantities based on physical system and noise models is only as accurate as the noise assumptions. Similarly, in classification applications, although manually designed features have proven to be effective, it is not always straightforward to find the most robust features to accommodate diverse sensor noise patterns and heterogeneous user behaviors. To this end, we propose DeepSense, a deep learning framework that directly addresses the aforementioned noise and feature customization challenges in a unified manner. DeepSense integrates convolutional and recurrent neural networks to exploit local interactions among similar mobile sensors, merge local interactions of different sensory modalities into global interactions, and extract temporal relationships to model signal dynamics. DeepSense thus provides a general signal estimation and classification framework that accommodates a wide range of applications. We demonstrate the effectiveness of DeepSense using three representative and challenging tasks: car tracking with motion sensors, heterogeneous human activity recognition, and user identification with biometric motion analysis. DeepSense significantly outperforms the state-of-the-art methods for all three tasks. In addition, we show that DeepSense is feasible to implement on smartphones and embedded devices thanks to its moderate energy consumption and low latency.
引用
收藏
页码:351 / 360
页数:10
相关论文
共 44 条
[1]  
Ang W. T., 2007, IEEE SENSORS J
[2]  
[Anonymous], 2016, Deep learning
[3]  
[Anonymous], 2012, MOBISYS
[4]  
[Anonymous], 2016, ARXIV160603238
[5]  
[Anonymous], 2017, IEEE transactions on neural networks and learning systems, DOI DOI 10.1109/TNNLS.2016.2582924
[6]  
[Anonymous], 2015, Proceedings of the 28th International Conference on Neural Information Processing Systems-Volume 2, NIPS'15, page
[7]  
[Anonymous], IEEE TASLP
[8]  
[Anonymous], 2016, Proceedings of the 15th International Conference on Information Processing in Sensor Networks
[9]  
[Anonymous], UBICOMP
[10]  
[Anonymous], 2012, P 10 INT C MOB SYST, DOI [10.1145/2307636.2307666, DOI 10.1145/2307636.2307666]