High-dimensional quantum key distribution using dispersive optics

被引:134
作者
Mower, Jacob [1 ,2 ]
Zhang, Zheshen [1 ]
Desjardins, Pierre [3 ]
Lee, Catherine [1 ,4 ]
Shapiro, Jeffrey H. [1 ]
Englund, Dirk [1 ,2 ,3 ]
机构
[1] MIT, Elect Res Lab, Cambridge, MA 02139 USA
[2] Columbia Univ, Dept Elect Engn, New York, NY 10027 USA
[3] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
[4] Columbia Univ, Dept Phys, New York, NY 10027 USA
来源
PHYSICAL REVIEW A | 2013年 / 87卷 / 06期
关键词
CRYPTOGRAPHY; TIME; ENTANGLEMENT; PHOTONS;
D O I
10.1103/PhysRevA.87.062322
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose a high-dimensional quantum key distribution (QKD) protocol that employs temporal correlations of entangled photons. The security of the protocol relies on measurements by Alice and Bob in one of two conjugate bases, implemented using dispersive optics. We show that this dispersion-based approach is secure against collective attacks. The protocol, which represents a QKD analog of pulse position modulation, is compatible with standard fiber telecommunications channels and wavelength division multiplexers. We describe several physical implementations to enhance the transmission rate and describe a heralded qudit source that is easy to implement and enables secret-key generation at >4 bits per character of distilled key across over 200 km of fiber.
引用
收藏
页数:8
相关论文
共 37 条
  • [11] NONLOCAL CANCELLATION OF DISPERSION
    FRANSON, JD
    [J]. PHYSICAL REVIEW A, 1992, 45 (05): : 3126 - 3132
  • [12] Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution
    Garcia-Patron, Raul
    Cerf, Nicolas J.
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (19)
  • [13] Holevo A S., 1973, Problems of Information Transmission, V9, P177
  • [14] Capacity of quantum Gaussian channels
    Holevo, AS
    Sohma, M
    Hirota, O
    [J]. PHYSICAL REVIEW A, 1999, 59 (03): : 1820 - 1828
  • [15] Jouguet P, 2013, NAT PHOTONICS, V7, P378, DOI [10.1038/NPHOTON.2013.63, 10.1038/nphoton.2013.63]
  • [16] Khan IA, 2006, PHYS REV A, V73, DOI [10.1103/PhysReva.73.031801, 10.1103/PhysRevA.73.031801]
  • [17] Analysis and interpretation of high transverse entanglement in optical parametric down conversion
    Law, CK
    Eberly, JH
    [J]. PHYSICAL REVIEW LETTERS, 2004, 92 (12) : 127903 - 1
  • [18] Decoy state quantum key distribution
    Lo, HK
    Ma, XF
    Chen, K
    [J]. PHYSICAL REVIEW LETTERS, 2005, 94 (23)
  • [19] Integrated all-pass filters for tunable dispersion and dispersion slope compensation
    Madsen, CK
    Lenz, G
    Bruce, AJ
    Cappuzzo, MA
    Gomez, LT
    Scotti, RE
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 1999, 11 (12) : 1623 - 1625
  • [20] Entanglement of the orbital angular momentum states of photons
    Mair, A
    Vaziri, A
    Weihs, G
    Zeilinger, A
    [J]. NATURE, 2001, 412 (6844) : 313 - 316