High-dimensional quantum key distribution using dispersive optics

被引:146
作者
Mower, Jacob [1 ,2 ]
Zhang, Zheshen [1 ]
Desjardins, Pierre [3 ]
Lee, Catherine [1 ,4 ]
Shapiro, Jeffrey H. [1 ]
Englund, Dirk [1 ,2 ,3 ]
机构
[1] MIT, Elect Res Lab, Cambridge, MA 02139 USA
[2] Columbia Univ, Dept Elect Engn, New York, NY 10027 USA
[3] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
[4] Columbia Univ, Dept Phys, New York, NY 10027 USA
来源
PHYSICAL REVIEW A | 2013年 / 87卷 / 06期
关键词
CRYPTOGRAPHY; TIME; ENTANGLEMENT; PHOTONS;
D O I
10.1103/PhysRevA.87.062322
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose a high-dimensional quantum key distribution (QKD) protocol that employs temporal correlations of entangled photons. The security of the protocol relies on measurements by Alice and Bob in one of two conjugate bases, implemented using dispersive optics. We show that this dispersion-based approach is secure against collective attacks. The protocol, which represents a QKD analog of pulse position modulation, is compatible with standard fiber telecommunications channels and wavelength division multiplexers. We describe several physical implementations to enhance the transmission rate and describe a heralded qudit source that is easy to implement and enables secret-key generation at >4 bits per character of distilled key across over 200 km of fiber.
引用
收藏
页数:8
相关论文
共 37 条
[1]   Large-alphabet quantum key distribution using energy-time entangled bipartite states [J].
Ali-Khan, Irfan ;
Broadbent, Curtis J. ;
Howell, John C. .
PHYSICAL REVIEW LETTERS, 2007, 98 (06)
[2]   High-order dispersion in photonic crystal waveguides [J].
Assefa, Solomon ;
Vlasov, Yurii A. .
OPTICS EXPRESS, 2007, 15 (26) :17562-17569
[3]   Quantum cryptography using larger alphabets [J].
Bechmann-Pasquinucci, H ;
Tittel, W .
PHYSICAL REVIEW A, 2000, 61 (06) :6
[4]  
Bennett C. H., 2014, Theoretical computer science, P175, DOI [DOI 10.1016/J.TCS.2014.05.025, 10.1016/j.tcs.2014.05.025]
[5]   Security of quantum key distribution using d-level systems -: art. no. 127902 [J].
Cerf, NJ ;
Bourennane, M ;
Karlsson, A ;
Gisin, N .
PHYSICAL REVIEW LETTERS, 2002, 88 (12) :4-127902
[6]   Multi-element superconducting nanowire single-photon detector [J].
Dauler, Eric A. ;
Robinson, Bryan S. ;
Kerman, Andrew J. ;
Yang, Joel K. W. ;
Rosfjord, Kristine M. ;
Anant, Vikas ;
Voronov, Boris ;
Gol'tsman, Gregory ;
Berggren, Karl K. .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2007, 17 (02) :279-284
[7]   Arrival time in quantum mechanics [J].
Delgado, V ;
Muga, JG .
PHYSICAL REVIEW A, 1997, 56 (05) :3425-3435
[8]   Quantum privacy amplification and the security of quantum cryptography over noisy channels [J].
Deutsch, D ;
Ekert, A ;
Jozsa, R ;
Macchiavello, C ;
Popescu, S ;
Sanpera, A .
PHYSICAL REVIEW LETTERS, 1996, 77 (13) :2818-2821
[9]   Distillation of secret key and entanglement from quantum states [J].
Devetak, I ;
Winter, A .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2005, 461 (2053) :207-235
[10]   QUANTUM CRYPTOGRAPHY BASED ON BELL THEOREM [J].
EKERT, AK .
PHYSICAL REVIEW LETTERS, 1991, 67 (06) :661-663