SCRAMBLE: A Secure and Configurable, Memristor-Based Neuromorphic Hardware Leveraging 3D Architecture

被引:0
作者
Rangarajan, Nikhil [1 ]
Patnaik, Satwik [2 ]
Nabeel, Mohammed [1 ]
Ashraf, Mohammed [1 ]
Rai, Shubham [3 ]
Raut, Gopal [4 ]
Abunahla, Heba [5 ]
Mohammad, Baker [5 ]
Vishvakarrna, Santosh Kumar [4 ]
Kumar, Akash [3 ]
Knechtel, Johann [1 ]
Sinanoglu, Ozgur [1 ]
机构
[1] New York Univ Abu Dhabi NYUAD, Abu Dhabi, U Arab Emirates
[2] Texas A&M Univ, College Stn, TX USA
[3] Tech Univ Dresden, Dresden, Germany
[4] IlT Indore, Indore, India
[5] Khalifa Univ KUSTAR, Doha, Qatar
来源
2022 IEEE COMPUTER SOCIETY ANNUAL SYMPOSIUM ON VLSI (ISVLSI 2022) | 2022年
关键词
SYSTEM;
D O I
10.1109/ISVLSI54635.2022.00067
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In Ibis work we present SCRAMBLE, a configurable neuromorphic architecture that provides security against different threats by employing memristors for critical parts and functions. More specifically, we employ memristive memory cells - that are 3D stacked on top of the configurable neuromorphic hardware - to securely hold the weights as well as activation functions of any model processed on the generalized architecture. Thus, programmable memristive cells enable reconfiguration of the architecture to thwart both model stealing and hardware IP stealing attacks. We implement a proof-of-concept for the proposed architecture and analyze its security metrics. We also benchmark it against selected prior art for neuromorphic architectures to quantify the security-performance trade-offs.
引用
收藏
页码:308 / 313
页数:6
相关论文
共 48 条
  • [1] An HY, 2017, 2017 IEEE INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY & SIGNAL/POWER INTEGRITY (EMCSI), P416, DOI 10.1109/ISEMC.2017.8077906
  • [2] [Anonymous], 2021, EMERGING TOPICS HARD, P257
  • [3] On SPICE macromodelling of TiO2 memristors
    Benderli, S.
    Wey, T. A.
    [J]. ELECTRONICS LETTERS, 2009, 45 (07) : 377 - 378
  • [4] Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations
    Benjamin, Ben Varkey
    Gao, Peiran
    McQuinn, Emmett
    Choudhary, Swadesh
    Chandrasekaran, Anand R.
    Bussat, Jean-Marie
    Alvarez-Icaza, Rodrigo
    Arthur, John V.
    Merolla, Paul A.
    Boahen, Kwabena
    [J]. PROCEEDINGS OF THE IEEE, 2014, 102 (05) : 699 - 716
  • [5] Biolek Z, 2009, RADIOENGINEERING, V18, P210
  • [6] Wafer-scale integration of two-dimensional materials in high-density memristive crossbar arrays for artificial neural networks
    Chen, Shaochuan
    Mahmoodi, Mohammad Reza
    Shi, Yuanyuan
    Mahata, Chandreswar
    Yuan, Bin
    Liang, Xianhu
    Wen, Chao
    Hui, Fei
    Akinwande, Deji
    Strukov, Dmitri B.
    Lanza, Mario
    [J]. NATURE ELECTRONICS, 2020, 3 (10) : 638 - 645
  • [7] Cheng KT, 2012, ISPD 12: PROCEEDINGS OF THE 2012 INTERNATIONAL SYMPOSIUM ON PHYSICAL DESIGN, P33
  • [8] High-Speed and Low-Energy Nitride Memristors
    Choi, Byung Joon
    Torrezan, Antonio C.
    Strachan, John Paul
    Kotula, P. G.
    Lohn, A. J.
    Marinella, Matthew J.
    Li, Zhiyong
    Williams, R. Stanley
    Yang, J. Joshua
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (29) : 5290 - 5296
  • [9] MEMRISTOR - MISSING CIRCUIT ELEMENT
    CHUA, LO
    [J]. IEEE TRANSACTIONS ON CIRCUIT THEORY, 1971, CT18 (05): : 507 - +
  • [10] A 0.8V 875 MS/s 7b low-power SAR ADC for ADC-Based Wireline Receivers in 22nm FDSOI
    Cordova, David
    Cops, Wim
    Deval, Yann
    Rivet, Francois
    Lapuyade, Herve
    Nodenot, Nicolas
    Piccin, Yohan
    [J]. 2020 IFIP/IEEE 28TH INTERNATIONAL CONFERENCE ON VERY LARGE SCALE INTEGRATION (VLSI-SOC), 2020, : 52 - 57