An Error Analysis for the Finite Element Approximation to the Steady-State Poisson-Nernst-Planck Equations

被引:36
作者
Yang, Ying [1 ]
Lu, Benzhuo [2 ]
机构
[1] Guilin Univ Elect Technol, Dept Computat Sci & Math, Guilin 541004, Guangxi, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, Natl Ctr Math & Interdisciplinary Sci,LSEC, Beijing 100190, Peoples R China
关键词
Poisson-Nernst-Planck equations; finite element method; error bounds; ELECTROSTATIC POTENTIAL COMPUTATION; GREENS-FUNCTION APPROXIMATIONS; BOLTZMANN EQUATION; ACETYLCHOLINESTERASE; GRAMICIDIN; CHANNEL;
D O I
10.4208/aamm.11-m11184
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Poisson-Nernst-Planck equations are a coupled system of nonlinear partial differential equations consisting of the Nernst-Planck equation and the electrostatic Poisson equation with delta distribution sources, which describe the electrodfffusion of ions in a solvated biomolecular system. In this paper, some error bounds for a piecewise finite element approximation to this problem are derived. Several numerical examples including biomolecular problems are shown to support our analysis.
引用
收藏
页码:113 / 130
页数:18
相关论文
共 29 条
  • [11] EISENBERG RS, 1993, BIOPHYS J, V64, pA22
  • [12] ELLIOTT CM, 1995, MATH COMPUT, V64, P1433, DOI 10.1090/S0025-5718-1995-1308451-4
  • [13] CONSISTENCY OF SEMICONDUCTOR MODELING - AN EXISTENCE-STABILITY ANALYSIS FOR THE STATIONARY VANROOSBROECK SYSTEM
    JEROME, JW
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1985, 45 (04) : 565 - 590
  • [14] A lattice relaxation algorithm for three-dimensional Poisson-Nernst-Planck theory with application to ion transport through the gramicidin A channel
    Kurnikova, MG
    Coalson, RD
    Graf, P
    Nitzan, A
    [J]. BIOPHYSICAL JOURNAL, 1999, 76 (02) : 642 - 656
  • [15] Electrodiffusion: A continuum modeling framework for biomolecular systems with realistic spatiotemporal resolution
    Lu, Benzhuo
    Zhou, Y. C.
    Huber, Gary A.
    Bond, Stephen D.
    Holst, Michael J.
    McCammon, J. Andrew
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2007, 127 (13)
  • [16] Poisson-Nernst-Planck equations for simulating biomolecular diffusion-reaction processes I: Finite element solutions
    Lu, Benzhuo
    Holst, Michael J.
    McCammon, J. Andrew
    Zhou, Y. C.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (19) : 6979 - 6994
  • [17] Nernst W., 1889, Z PHYS CHEM, V4, P4
  • [18] SCHATZ AH, 1977, MATH COMPUT, V31, P414, DOI 10.1090/S0025-5718-1977-0431753-X
  • [19] Continuum diffusion reaction rate calculations of wild-type and mutant mouse acetylcholinesterase: Adaptive finite element analysis
    Song, YH
    Zhang, YJ
    Bajaj, CL
    Baker, NA
    [J]. BIOPHYSICAL JOURNAL, 2004, 87 (03) : 1558 - 1566
  • [20] Finite element solution of the steady-state Smoluchowski equation for rate constant calculations
    Song, YH
    Zhang, YJ
    Shen, TY
    Bajaj, CL
    McCammon, A
    Baker, NA
    [J]. BIOPHYSICAL JOURNAL, 2004, 86 (04) : 2017 - 2029