An Error Analysis for the Finite Element Approximation to the Steady-State Poisson-Nernst-Planck Equations

被引:36
|
作者
Yang, Ying [1 ]
Lu, Benzhuo [2 ]
机构
[1] Guilin Univ Elect Technol, Dept Computat Sci & Math, Guilin 541004, Guangxi, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, Natl Ctr Math & Interdisciplinary Sci,LSEC, Beijing 100190, Peoples R China
关键词
Poisson-Nernst-Planck equations; finite element method; error bounds; ELECTROSTATIC POTENTIAL COMPUTATION; GREENS-FUNCTION APPROXIMATIONS; BOLTZMANN EQUATION; ACETYLCHOLINESTERASE; GRAMICIDIN; CHANNEL;
D O I
10.4208/aamm.11-m11184
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Poisson-Nernst-Planck equations are a coupled system of nonlinear partial differential equations consisting of the Nernst-Planck equation and the electrostatic Poisson equation with delta distribution sources, which describe the electrodfffusion of ions in a solvated biomolecular system. In this paper, some error bounds for a piecewise finite element approximation to this problem are derived. Several numerical examples including biomolecular problems are shown to support our analysis.
引用
收藏
页码:113 / 130
页数:18
相关论文
共 50 条
  • [1] Adaptive finite element approximation for steady-state Poisson-Nernst-Planck equations
    Tingting Hao
    Manman Ma
    Xuejun Xu
    Advances in Computational Mathematics, 2022, 48
  • [2] Adaptive finite element approximation for steady-state Poisson-Nernst-Planck equations
    Hao, Tingting
    Ma, Manman
    Xu, Xuejun
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2022, 48 (04)
  • [3] Error analysis of finite element method for Poisson-Nernst-Planck equations
    Sun, Yuzhou
    Sun, Pengtao
    Zheng, Bin
    Lin, Guang
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 301 : 28 - 43
  • [4] A virtual element method for the steady-state Poisson-Nernst-Planck equations on polygonal meshes
    Liu, Yang
    Shu, Shi
    Wei, Huayi
    Yang, Ying
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 102 : 95 - 112
  • [5] Steady state solution of the Poisson-Nernst-Planck equations
    Golovnev, A.
    Trimper, S.
    PHYSICS LETTERS A, 2010, 374 (28) : 2886 - 2889
  • [6] FINITE DOMAIN EFFECTS IN STEADY STATE SOLUTIONS OF POISSON-NERNST-PLANCK EQUATIONS
    Elad, Doron
    Gavish, Nir
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2019, 79 (03) : 1030 - 1050
  • [7] Superconvergence analysis of finite element method for Poisson-Nernst-Planck equations
    Shi, Dongyang
    Yang, Huaijun
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2019, 35 (03) : 1206 - 1223
  • [8] Multiple solutions of steady-state Poisson-Nernst-Planck equations with steric effects
    Lin, Tai-Chia
    Eisenberg, Bob
    NONLINEARITY, 2015, 28 (07) : 2053 - 2080
  • [9] Local averaging type a posteriori error estimates for the nonlinear steady-state Poisson-Nernst-Planck equations
    Yang, Ying
    Shen, Ruigang
    Fang, Mingjuan
    Shu, Shi
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 404
  • [10] Gradient Recovery-Type a Posteriori Error Estimates for Steady-State Poisson-Nernst-Planck Equations
    Shen, Ruigang
    Shu, Shi
    Yang, Ying
    Fang, Mingjuan
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2020, 12 (06) : 1353 - 1383