In the paper Koch et al. (2009), the authors make the following conjecture: any bounded ancient mild solution of the 3D axially symmetric Navier-Stokes equations is constant. And it is proved in the case that the solution is swirl free. Our purpose of this paper is to improve their result by allowing that the solution can grow with a power smaller than 1 with respect to the distance to the origin. Also, we will show that such a power is optimal to prove the Liouville type theorem since we can find counterexamples for the Navier-Stokes equations such that the Liouville theorem fails if the solution can grow linearly. (C) 2020 Elsevier Ltd. All rights reserved.
机构:
Univ Calif Riverside, Dept Math, Riverside, CA 92521 USAUniv Calif Riverside, Dept Math, Riverside, CA 92521 USA
Carrillo, Bryan
Pan, Xinghong
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 211106, Peoples R ChinaUniv Calif Riverside, Dept Math, Riverside, CA 92521 USA
Pan, Xinghong
Zhang, Qi S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Riverside, Dept Math, Riverside, CA 92521 USA
Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R ChinaUniv Calif Riverside, Dept Math, Riverside, CA 92521 USA
Zhang, Qi S.
Zhao, Na
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Riverside, Dept Math, Riverside, CA 92521 USA
Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
Inst Appl Phys & Computat Math, Beijing 100088, Peoples R ChinaUniv Calif Riverside, Dept Math, Riverside, CA 92521 USA
机构:
Univ Calif Riverside, Dept Math, Riverside, CA 92521 USAUniv Calif Riverside, Dept Math, Riverside, CA 92521 USA
Carrillo, Bryan
Pan, Xinghong
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 211106, Peoples R ChinaUniv Calif Riverside, Dept Math, Riverside, CA 92521 USA
Pan, Xinghong
Zhang, Qi S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Riverside, Dept Math, Riverside, CA 92521 USA
Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R ChinaUniv Calif Riverside, Dept Math, Riverside, CA 92521 USA
Zhang, Qi S.
Zhao, Na
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Riverside, Dept Math, Riverside, CA 92521 USA
Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
Inst Appl Phys & Computat Math, Beijing 100088, Peoples R ChinaUniv Calif Riverside, Dept Math, Riverside, CA 92521 USA