Lattice Boltzmann simulation of melting heat transfer in a composite phase change material

被引:26
|
作者
Han, Qun [1 ]
Wang, He [1 ]
Yu, Cheng [2 ]
Zhang, Chengbin [1 ]
机构
[1] Southeast Univ, Sch Energy & Environm, Key Lab Energy Thermal Convers & Control, Minist Educ, Nanjing 210096, Jiangsu, Peoples R China
[2] Yangzhou Univ, Coll Elect Energy & Power Engn, Yangzhou 225127, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Lattice Boltzmann simulation; Melting; Heat transfer; PCM; THERMAL-CONDUCTIVITY ENHANCEMENT; ENERGY-STORAGE; NATURAL-CONVECTION; POROUS-MEDIA; PARAFFIN WAX; MODEL; PCM; ENCLOSURE; GRAPHITE; CAVITY;
D O I
10.1016/j.applthermaleng.2020.115423
中图分类号
O414.1 [热力学];
学科分类号
摘要
Thermal performance enhancement of the phase change material (PCM) is of particular significance to the energy storage applications. The composite PCM with metal particles is introduced here for maximizing the thermal performance. Based on the description of a composite PCM by the QSGS method, a lattice Boltzmann model of the melting composite PCM was developed and numerically solved. The melting front evolution and transient temperature response in the composite PCM are analyzed and compared to the pure PCM. Furthermore, the effects of the dispersity, volume fraction, and diffusion direction of the metal particles on the melting performance of composite PCMs are comprehensively analyzed. The results indicate that the presence of metal particles benefits the thermal performance enhancement of PCMs. The melting evolution and the heat transfer in the composite PCM are much quicker due to the enhanced thermal conduction. Besides, the melting front morphology maintains an approximate line during the whole melting process arising from the natural convection suppression. For maximizing the melting heat transport, the metal particles in the composite PCM are recommended to present a larger dispersity, and their diffusion direction is suggested to be in the same direction as the heat flow. Interestingly, even though the volume fraction of the metal particles is identical, the melting performance of composite PCM is also relevant to the dispersity and diffusion direction of the metal particles.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] THE LATTICE BOLTZMANN INVESTIGATION FOR THE MELTING PROCESS OF PHASE CHANGE MATERIAL IN AN INCLINING CAVITY
    Rao, Zhonghao
    Huo, Yutao
    Li, Yimin
    PROCEEDINGS OF THE ASME 5TH INTERNATIONAL CONFERENCE ON MICRO/NANOSCALE HEAT AND MASS TRANSFER, 2016, VOL 1, 2016,
  • [32] Heat transfer performance and melting dynamic of a phase change material subjected to thermocapillary effects
    Madruga, Santiago
    Mendoza, Carolina
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 109 : 501 - 510
  • [33] Experimental investigations on the heat transfer of melting phase change material (PCM)
    Sun, Xiaoqin
    Chu, Youhong
    Mo, Yajing
    Fan, Siyuan
    Liao, Shuguang
    CLEANER ENERGY FOR CLEANER CITIES, 2018, 152 : 186 - 191
  • [34] Impact of ultrasound on the melting process and heat transfer of phase change material
    Yan, Zhongjun
    Yu, Zhun
    Yang, Tingting
    Li, Shuishen
    Zhang, Guoqiang
    INNOVATIVE SOLUTIONS FOR ENERGY TRANSITIONS, 2019, 158 : 5014 - 5019
  • [35] Lattice Boltzmann simulation of phase change and heat transfer characteristics in the multi-layer deposition
    Ren, Yanlin
    Liu, Zhaomiao
    Pang, Yan
    Wang, Xiang
    Xu, Yuandi
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2021, 42 (04) : 553 - 566
  • [36] Lattice Boltzmann simulation of heat transfer with phase change in saturated soil during freezing process
    Wang, Zhiliang
    Xin, Libin
    Xu, Zemin
    Shen, Linfang
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2017, 72 (05) : 361 - 376
  • [37] Three-Dimensional Simulation of Heat and Mass Transfer by the Hybrid Lattice Boltzmann Method
    Nee, A. E.
    JOURNAL OF ENGINEERING PHYSICS AND THERMOPHYSICS, 2023, 96 (03) : 585 - 593
  • [38] Lattice Boltzmann simulation of phase change and heat transfer characteristics in the multi-layer deposition
    Yanlin Ren
    Zhaomiao Liu
    Yan Pang
    Xiang Wang
    Yuandi Xu
    Applied Mathematics and Mechanics, 2021, 42 : 553 - 566
  • [39] A lattice Boltzmann simulation of enhanced heat transfer of nanofluids
    Zhou, W. N.
    Yan, Y. Y.
    Xu, J. L.
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2014, 55 : 113 - 120
  • [40] Lattice Boltzmann simulation of heat transfer and fluid flow in a microchannel with nanofluids
    Yang, Yue-Tzu
    Lai, Feng-Hsiang
    HEAT AND MASS TRANSFER, 2011, 47 (10) : 1229 - 1240