Submanifolds with the harmonic Gauss map in Lie groups

被引:0
作者
Petrov, Ye V. [1 ]
机构
[1] Kharkov Natl Univ, Dept Mech & Math, UA-61077 Kharkov, Ukraine
关键词
left invariant metric; biinvariant metric; Gauss map; harmonic map; 2-step nilpotent group; totally geodesic submanifold;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we find a criterion for the Gauss map of an immersed smooth submanifold in some Lie group with keft invariant metric to be harmonic. Using the obtained expression we prove some necessary and sufficient conditions for the harmonicity of this map in the case of totally geodesic submanifolds in Lie groups admitting biinvariant metrics. We show that, depending on the structure of the biinvariant metrics or nonharmonic in some metric. For 2-step nilpotent groups we prove that the Gauss map of a geodesic is harmonic if and only if it is constant.
引用
收藏
页码:278 / 293
页数:16
相关论文
共 10 条
[1]   Constant mean curvature hypersurfaces in a Lie group with a bi-invariant metric [J].
do Espírito-Santo, N ;
Fornari, S ;
Frensel, K ;
Ripoll, J .
MANUSCRIPTA MATHEMATICA, 2003, 111 (04) :459-470
[3]  
Eberlein P, 2003, COMMUN ANAL GEOM, V11, P441
[4]  
EBERLEIN P, 1994, ANN SCI ECOLE NORM S, V27, P611
[5]  
Kobayashi S., 1969, Foundation of differential geometry, VII
[6]  
Kobayashi S., 1968, T HOKU MATH J, V20, P21, DOI [10.2748/tmj/1178243214, DOI 10.2748/TMJ/1178243214]
[7]   CURVATURES OF LEFT INVARIANT METRICS ON LIE GROUPS [J].
MILNOR, J .
ADVANCES IN MATHEMATICS, 1976, 21 (03) :293-329
[8]  
PETROV YV, 2006, J MATH PHYS ANAL GEO, V2, P186
[9]   TENSION FIELD OF GAUSS MAP [J].
RUH, EA ;
VILMS, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 149 (02) :569-&
[10]  
Urakawa H., 1993, Calculus of Variations and Harmonic Maps