Rational connectedness of log Q-Fano varieties

被引:0
|
作者
Zhang, Q [1 ]
机构
[1] Univ Missouri, Dept Math, Columbus, MO 65211 USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give an affirmative answer to a conjecture in the Minimal Model Program. We prove that log Q-Fano varieties are rationally connected. We also study the behavior of the canonical bundles under projective morphisms.
引用
收藏
页码:131 / 142
页数:12
相关论文
共 50 条
  • [21] On deformations of Q-Fano threefolds II
    Sano, Taro
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2017, 730 : 251 - 261
  • [22] BOUNDEDNESS OF Q-FANO VARIETIES WITH DEGREES AND ALPHA-INVARIANTS BOUNDED FROM BELOW
    Jiang, Chen
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2020, 53 (05): : 1235 - 1248
  • [23] K-polystability of Q-Fano varieties admitting Kähler-Einstein metrics
    Robert J. Berman
    Inventiones mathematicae, 2016, 203 : 973 - 1025
  • [24] Duality related with key varieties of Q-Fano threefolds constructed from projective bundles
    Takagi, Hiromichi
    ADVANCES IN GEOMETRY, 2024, 24 (01) : 1 - 17
  • [25] ON DEFORMATIONS OF Q-FANO 3-FOLDS
    Sano, Taro
    JOURNAL OF ALGEBRAIC GEOMETRY, 2016, 25 (01) : 141 - 176
  • [26] Conic bundle structures on Q-Fano threefolds
    Prokhorov, Yuri
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (05): : 1881 - 1897
  • [27] Asymptotically log Fano varieties
    Cheltsov, Ivan A.
    Rubinstein, Yanir A.
    ADVANCES IN MATHEMATICS, 2015, 285 : 1241 - 1300
  • [28] Residual q-Fano Planes and Related Structures
    Etzion, Tuvi
    Hooker, Niv
    ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (02):
  • [29] Simple connectedness of weak Fano varieties
    Takayama, S
    JOURNAL OF ALGEBRAIC GEOMETRY, 2000, 9 (02) : 403 - 407
  • [30] RATIONAL CONNECTEDNESS AND BOUNDEDNESS OF FANO MANIFOLDS
    KOLLAR, J
    MIYAOKA, Y
    MORI, S
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1992, 36 (03) : 765 - 779