Rational connectedness of log Q-Fano varieties

被引:0
|
作者
Zhang, Q [1 ]
机构
[1] Univ Missouri, Dept Math, Columbus, MO 65211 USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give an affirmative answer to a conjecture in the Minimal Model Program. We prove that log Q-Fano varieties are rationally connected. We also study the behavior of the canonical bundles under projective morphisms.
引用
收藏
页码:131 / 142
页数:12
相关论文
共 50 条
  • [1] On the birational unboundedness of higher dimensional Q-Fano varieties
    Okada, Takuzo
    MATHEMATISCHE ANNALEN, 2009, 345 (01) : 195 - 212
  • [2] Alpha invariant and K-stability of Q-Fano varieties
    Odaka, Yuji
    Sano, Yuji
    ADVANCES IN MATHEMATICS, 2012, 229 (05) : 2818 - 2834
  • [3] A decomposition theorem for Q-Fano Kahler-Einstein varieties
    Druel, Stephane
    Guenancia, Henri
    Paun, Mihai
    COMPTES RENDUS MATHEMATIQUE, 2024, 362 : 93 - 118
  • [4] A valuative criterion for uniform K-stability of Q-Fano varieties
    Fujita, Kento
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 751 : 309 - 338
  • [5] Existence of Kahler-Ricci solitons on smoothable Q-Fano varieties
    Li, Yan
    ADVANCES IN MATHEMATICS, 2021, 391
  • [6] The degree of Q-Fano threefolds
    Prokhorov, Yu. G.
    SBORNIK MATHEMATICS, 2007, 198 (11-12) : 1683 - 1702
  • [7] OPENNESS OF UNIFORM K-STABILITY IN FAMILIES OF Q-FANO VARIETIES
    Blum, Harold
    Liu, Yuchen
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2022, 55 (01): : 1 - 41
  • [9] Families of Calabi-Yau hypersurfaces in Q-Fano toric varieties
    Artebani, Michela
    Comparin, Paola
    Guilbot, Robin
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2016, 106 (02): : 319 - 341
  • [10] EXISTENCE AND DEFORMATIONS OF KAHLER-EINSTEIN METRICS ON SMOOTHABLE Q-FANO VARIETIES
    Spotti, Cristiano
    Sun, Song
    Yao, Chengjian
    DUKE MATHEMATICAL JOURNAL, 2016, 165 (16) : 3043 - 3083