Rational connectedness of log Q-Fano varieties

被引:0
作者
Zhang, Q [1 ]
机构
[1] Univ Missouri, Dept Math, Columbus, MO 65211 USA
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2006年 / 590卷
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give an affirmative answer to a conjecture in the Minimal Model Program. We prove that log Q-Fano varieties are rationally connected. We also study the behavior of the canonical bundles under projective morphisms.
引用
收藏
页码:131 / 142
页数:12
相关论文
共 17 条
[1]  
Campana F, 2004, ANN I FOURIER, V54, P499, DOI 10.5802/aif.2027
[2]  
CAMPANA F, 1992, ANN SCI ECOLE NORM S, V25, P539
[3]  
Campana F., 1995, J ALGEBRAIC GEOM, V4, P487
[4]  
DEMAILLY JP, 1993, COMPOS MATH, V89, P217
[5]   Families of rationally connected varieties [J].
Graber, T ;
Harris, J ;
Starr, J .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 16 (01) :57-67
[6]   Subadjunction of log canonical divisors, II [J].
Kawamata, Y .
AMERICAN JOURNAL OF MATHEMATICS, 1998, 120 (05) :893-899
[7]  
Kawamata Y., 1987, ADV STUDIES PURE MAT, V10, P283
[8]   Fundamental groups of open K3 surfaces, Enriques surfaces and Fano 3-folds [J].
Keum, J ;
Zhang, DQ .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2002, 170 (01) :67-91
[9]  
KOLLAR J, 1992, J DIFFER GEOM, V36, P765
[10]  
Kollar J., 1992, J. Alg. Geom., V1, P429