WHEN DOES THE MOORE-PENROSE INVERSE FLIP?

被引:10
作者
Hartwig, R. E. [1 ]
Patricio, P. [2 ]
机构
[1] NCSU, Dept Math, Raleigh, NC 27695 USA
[2] Univ Minho, Dept Matemat & Aplicacoes, P-4710057 Braga, Portugal
来源
OPERATORS AND MATRICES | 2012年 / 6卷 / 01期
关键词
rings; triangular matrices; von Neumann regularity; Moore-Penrose inverse; GENERALIZED INVERSES; PARTITIONED MATRIX; RINGS;
D O I
10.7153/oam-06-13
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give necessary and sufficient conditions for the matrix [(a)(b) (0)(d)], over a *-regular ring, to have a Moore-Penrose inverse of four different types, corresponding to the four cases where the zero element can stand. In particular, we study the case where the Moore-Penrose inverse of the matrix flips.
引用
收藏
页码:181 / 192
页数:12
相关论文
共 13 条
[1]  
Ben-Israel A., 2003, Generalized inverses: theory and applications
[2]  
BERBERIAN S. K., BAER RINGS BAER RING
[3]  
Cline R.E., 1965, SIAM J NUMER ANAL, P99
[4]   REPRESENTATIONS FOR THE GENERALIZED INVERSE OF A PARTITIONED MATRIX [J].
CLINE, RE .
JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1964, 12 (03) :588-600
[5]  
HARTWIG R., G INVERSES PAT UNPUB
[6]   BLOCK GENERALIZED INVERSES [J].
HARTWIG, RE .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1976, 61 (03) :197-251
[7]  
HUNG CH, 1975, CZECH MATH J, V25, P354
[8]   ELEMENTARY DIVISORS AND MODULES [J].
KAPLANSKY, I .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1949, 66 (JUL-) :464-491
[9]   ANY ORTHOCOMPLEMENTED COMPLETE MODULAR LATTICE IS A CONTINUOUS GEOMETRY [J].
KAPLANSKY, I .
ANNALS OF MATHEMATICS, 1955, 61 (03) :524-541
[10]  
Kaplansky I., 1968, Mathematics Lecture Note Series