Macrophage-Specific in Vivo Gene Editing Using Cationic Lipid-Assisted Polymeric Nanoparticles

被引:189
作者
Luo, Ying-Li [1 ]
Xu, Cong-Fei [2 ,3 ,4 ]
Li, Hong-Jun [2 ,3 ,4 ]
Cao, Zhi-Ting [8 ]
Liu, Jing [1 ]
Wang, Ji-Long [1 ]
Du, Xiao-Jiao [2 ,3 ,4 ]
Yang, Xian-Zhu [2 ,3 ,4 ]
Gu, Zhen [6 ,7 ]
Wang, Jun [1 ,2 ,3 ,4 ,5 ]
机构
[1] Univ Sci & Technol China, Sch Life Sci, Hefei 230027, Anhui, Peoples R China
[2] South China Univ Technol, Inst Life Sci, Guangzhou 510006, Guangdong, Peoples R China
[3] South China Univ Technol, Sch Med, Guangzhou 510006, Guangdong, Peoples R China
[4] South China Univ Technol, Natl Engn Res Ctr Tissue Restorat & Reconstruct, Guangzhou 510006, Guangdong, Peoples R China
[5] Res Inst Food Nutr & Human Hlth, Guangzhou 510006, Guangdong, Peoples R China
[6] Univ North Carolina Chapel Hill, Joint Dept Biomed Engn, Raleigh, NC 27695 USA
[7] North Carolina State Univ, Raleigh, NC 27695 USA
[8] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230027, Anhui, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
CRISPR/Cas9; specific gene editing; nanomedicine; specific promoter; type; 2; diabetes; CRISPR-CAS9; SYSTEM; DELIVERY; CRISPR/CAS9; CHALLENGES; MOUSE; MICE; DNA; PRINCIPLES; THERAPY; ROLES;
D O I
10.1021/acsnano.7b07874
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The CRISPR/Cas9 gene editing technology holds promise for the treatment of multiple diseases. However, the inability to perform specific gene editing in targeted tissues and cells, which may cause off-target effects, is one of the critical bottlenecks for therapeutic application of CRISPR/Cas9. Herein, macrophage-specific promoter driven Cas9 expression plasmids (pM458 and pM330) were constructed and encapsulated in cationic lipid-assisted PEG-b-PLGA nanoparticles (CLAN). The obtained nano particles encapsulating the CRISPR/Cas9 plasmids were able to specifically express Cas9 in macrophages as well as their precursor monocytes both in vitro and in vivo. More importantly, after further encoding a guide RNA targeting Ntn1 (sgNtn 1) into the plasmid, the resultant CLAN(pm330/sgNtn1) successfully disrupted the Ntn1 gene in macrophages and their precursor monocytes in vivo, which reduced expression of netrin-1 (encoded by Ntnl) and subsequently improved type 2 diabetes (T2D) symptoms. Meanwhile, the Ntn1 gene was not disrupted in other cells due to specific expression of Cas9 by the CD68 promoter. This strategy provides alternative avenues for specific in vivo gene editing with the CRISPR/Cas9 system.
引用
收藏
页码:994 / 1005
页数:23
相关论文
共 32 条
[11]   Challenges in CRISPR/CAS9 Delivery: Potential Roles of Nonviral Vectors [J].
Li, Ling ;
He, Zhi-Yao ;
Wei, Xia-Wei ;
Gao, Guang-Ping ;
Wei, Yu-Quan .
HUMAN GENE THERAPY, 2015, 26 (07) :452-462
[12]   Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA [J].
Long, Chengzu ;
McAnally, John R. ;
Shelton, John M. ;
Mireault, Alex A. ;
Bassel-Duby, Rhonda ;
Olson, Eric N. .
SCIENCE, 2014, 345 (6201) :1184-1188
[13]   Non-Viral CRISPR/Cas Gene Editing In Vitro and In Vivo Enabled by Synthetic Nanoparticle Co-Delivery of Cas9 mRNA and sgRNA [J].
Miller, Jason B. ;
Zhang, Shuyuan ;
Kos, Petra ;
Xiong, Hu ;
Zhou, Kejin ;
Perelman, Sofya S. ;
Zhu, Hao ;
Siegwart, Daniel J. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (04) :1059-1063
[14]   Truncated netrin-1 contributes to pathological vascular permeability in diabetic retinopathy [J].
Miloudi, Khalil ;
Binet, Francois ;
Wilson, Ariel ;
Cerani, Agustin ;
Oubaha, Malika ;
Menard, Catherine ;
Henriques, Sullivan ;
Mawambo, Gaelle ;
Dejda, Agnieszka ;
Phuong Trang Nguyen ;
Rezende, Flavio A. ;
Bourgault, Steve ;
Kennedy, Timothy E. ;
Sapieha, Przemyslaw .
JOURNAL OF CLINICAL INVESTIGATION, 2016, 126 (08) :3006-3022
[15]   In Vivo Delivery of CRISPR/Cas9 for Therapeutic Gene Editing: Progress and Challenges [J].
Mout, Rubul ;
Ray, Moumita ;
Lee, Yi-Wei ;
Scaletti, Federica ;
Rotello, Vincent M. .
BIOCONJUGATE CHEMISTRY, 2017, 28 (04) :880-884
[16]   Direct Cytosolic Delivery of CRISPR/Cas9-Ribonucleoprotein for Efficient Gene Editing [J].
Mout, Rubul ;
Ray, Moumita ;
Tonga, Gulen Yesilbag ;
Lee, Yi-Wei ;
Tay, Tristan ;
Sasaki, Kanae ;
Rotello, Vincent M. .
ACS NANO, 2017, 11 (03) :2452-2458
[17]   Mouse Genome Engineering via CRISPR-Cas9 for Study of Immune Function [J].
Pelletier, Stephane ;
Gingras, Sebastien ;
Green, Douglas R. .
IMMUNITY, 2015, 42 (01) :18-27
[18]   Netrin-1 promotes adipose tissue macrophage retention and insulin resistance in obesity [J].
Ramkhelawon, Bhama ;
Hennessy, Elizabeth J. ;
Menager, Mickael ;
Ray, Tathagat Dutta ;
Sheedy, Frederick J. ;
Hutchison, Susan ;
Wanschel, Amarylis ;
Oldebeken, Scott ;
Geoffrion, Michele ;
Spiro, Westley ;
Miller, George ;
McPherson, Ruth ;
Rayner, Katey J. ;
Moore, Kathryn J. .
NATURE MEDICINE, 2014, 20 (04) :377-+
[19]   In vivo genome editing using Staphylococcus aureus Cas9 [J].
Ran, F. Ann ;
Cong, Le ;
Yan, Winston X. ;
Scott, David A. ;
Gootenberg, Jonathan S. ;
Kriz, Andrea J. ;
Zetsche, Bernd ;
Shalem, Ophir ;
Wu, Xuebing ;
Makarova, Kira S. ;
Koonin, Eugene V. ;
Sharp, Phillip A. ;
Zhang, Feng .
NATURE, 2015, 520 (7546) :186-U98
[20]   Genome engineering using the CRISPR-Cas9 system [J].
Ran, F. Ann ;
Hsu, Patrick D. ;
Wright, Jason ;
Agarwala, Vineeta ;
Scott, David A. ;
Zhang, Feng .
NATURE PROTOCOLS, 2013, 8 (11) :2281-2308