Predicting differential diagnosis between bipolar and unipolar depression with multiple kernel learning on multimodal structural neuroimaging

被引:39
作者
Vai, Benedetta [1 ,2 ,3 ]
Parenti, Lorenzo [1 ]
Bollettini, Irene [1 ]
Cara, Cristina [1 ]
Verga, Chiara [1 ]
Melloni, Elisa [1 ]
Mazza, Elena [1 ,2 ]
Poletti, Sara [1 ,2 ]
Colombo, Cristina [1 ,2 ]
Benedetti, Francesco [1 ,2 ]
机构
[1] IRCCS, San Raffaele Sci Inst, Psychiat & Clin Psychobiol Unit, Div Neurosci, Milan, Italy
[2] Univ Vita Salute San Raffaele, Milan, Italy
[3] Fdn Ctr San Raffaele, Milan, Italy
关键词
Bipolar disorder; Machine learning; Grey matter; White matter; Biomarker; Multiple kernel learning; VOXEL-BASED MORPHOMETRY; WHITE-MATTER INTEGRITY; PATTERN-RECOGNITION; CORPUS-CALLOSUM; DISORDER; DIFFUSION; ABNORMALITIES; REGISTRATION; MEDICATION; LITHIUM;
D O I
10.1016/j.euroneuro.2020.03.008
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
One of the greatest challenges in providing early effective treatment in mood disorders is the early differential diagnosis between major depression (MDD) and bipolar disorder (BD). A remarkable need exists to identify reliable biomarkers for these disorders. We integrate structural neuroimaging techniques (i.e. Tract-based Spatial Statistics, TBSS, and Voxel-based morphometry) in a multiple kernel learning procedure in order to define a predictive function of BD against MDD diagnosis in a sample of 148 patients. We achieved a balanced accuracy of 73.65% with a sensitivity for BD of 74.32% and specificity for MDD of 72.97%. Mass-univariates analyses showed reduced grey matter volume in right hippocampus, amygdala, parahippocampal, fusiform gyrus, insula, rolandic and frontal operculum and cerebellum, in BD compared to MDD. Volumes in these regions and in anterior cingulate cortex were also reduced in BD compared to healthy controls (n = 74). TBSS analyses revealed widespread significant effects of diagnosis on fractional anisotropy, axial, radial, and mean diffusivity in several white matter tracts, suggesting disruption of white matter microstructure in depressed patients compared to healthy controls, with worse pattern for MDD. To best of our knowledge, this is the first study combining grey matter and diffusion tensor imaging in predicting BD and MDD diagnosis. Our results prompt brain quantitative biomarkers and multiple kernel learning as promising tool for personalized treatment in mood disorders. (C) 2020 Elsevier B.V. and ECNP. All rights reserved.
引用
收藏
页码:28 / 38
页数:11
相关论文
共 81 条
[51]   Microstructural Differences in the Corpus Callosum in Patients With Bipolar Disorder and Major Depressive Disorder [J].
Matsuoka, Kiwamu ;
Yasuno, Fumihiko ;
Kishimoto, Toshifumi ;
Yamamoto, Akihide ;
Kiuchi, Kuniaki ;
Kosaka, Jun ;
Nagatsuka, Kazuyuki ;
Iida, Hidehiro ;
Kudo, Takashi .
JOURNAL OF CLINICAL PSYCHIATRY, 2017, 78 (01) :99-104
[52]   Brain Structural Effects of Psychopharmacological Treatment in Bipolar Disorder [J].
McDonald, Colm .
CURRENT NEUROPHARMACOLOGY, 2015, 13 (04) :445-457
[53]   The heritability of bipolar affective disorder and the genetic relationship to unipolar depression [J].
McGuffin, P ;
Rijsdijk, F ;
Andrew, M ;
Sham, P ;
Katz, R ;
Cardno, A .
ARCHIVES OF GENERAL PSYCHIATRY, 2003, 60 (05) :497-502
[54]   Genetic biomarkers for differential diagnosis of major depressive disorder and bipolar disorder: A systematic and critical review [J].
Menezes, Itiana Castro ;
Baes, Cristiane von Werne ;
Lacchini, Riccardo ;
Juruena, Mario Francisco .
BEHAVIOURAL BRAIN RESEARCH, 2019, 357 :29-38
[55]   Pattern recognition analyses of brain activation elicited by happy and neutral faces in unipolar and bipolar depression [J].
Mourao-Miranda, Janaina ;
Almeida, Jorge R. C. ;
Hassel, Stefanie ;
de Oliveira, Leticia ;
Versace, Amelia ;
Marquand, Andre F. ;
Sato, Joao R. ;
Brammer, Michael ;
Phillips, Mary L. .
BIPOLAR DISORDERS, 2012, 14 (04) :451-460
[56]   Nonparametric permutation tests for functional neuroimaging: A primer with examples [J].
Nichols, TE ;
Holmes, AP .
HUMAN BRAIN MAPPING, 2002, 15 (01) :1-25
[57]   Regional brain volume reductions in major depressive disorder and bipolar disorder: An analysis by voxel-based morphometry [J].
Niida, Richi ;
Yamagata, Bun ;
Matsuda, Hiroshi ;
Niida, Akira ;
Uechi, Akihiko ;
Kito, Shinsuke ;
Mimura, Masaru .
INTERNATIONAL JOURNAL OF GERIATRIC PSYCHIATRY, 2019, 34 (01) :186-192
[58]   Brain Morphometric Biomarkers Distinguishing Unipolar and Bipolar Depression A Voxel-Based Morphometry-Pattern Classification Approach [J].
Redlich, Ronny ;
Almeida, Jorge J. R. ;
Grotegerd, Dominik ;
Opel, Nils ;
Kugel, Harald ;
Heindel, Walter ;
Arolt, Volker ;
Phillips, Mary L. ;
Dannlowski, Udo .
JAMA PSYCHIATRY, 2014, 71 (11) :1222-1230
[59]   A voxel-based diffusion tensor imaging study in unipolar and bipolar depression [J].
Repple, Jonathan ;
Meinert, Susanne ;
Grotegerd, Dominik ;
Kugel, Harald ;
Redlich, Ronny ;
Dohm, Katharina ;
Zaremba, Dario ;
Opel, Nils ;
Buerger, Christian ;
Foerster, Katharina ;
Nick, Theresa ;
Arolt, Volker ;
Heindel, Walter ;
Deppe, Michael ;
Dannlowski, Udo .
BIPOLAR DISORDERS, 2017, 19 (01) :23-31
[60]   Distinguishing medication-free subjects with unipolar disorder from subjects with bipolar disorder: state matters [J].
Rive, Maria M. ;
Redlich, Ronny ;
Schmaal, Lianne ;
Marquand, Andre F. ;
Dannlowski, Udo ;
Grotegerd, Dominik ;
Veltman, Dick J. ;
Schene, Aart H. ;
Ruhe, Henricus G. .
BIPOLAR DISORDERS, 2016, 18 (07) :612-623