Do You Really Follow Them? Automatic Detection of Credulous Twitter Users

被引:4
作者
Balestrucci, Alessandro [1 ]
De Nicola, Rocco [2 ]
Petrocchi, Marinella [2 ,3 ]
Trubiani, Catia [1 ]
机构
[1] Gran Sasso Sci Inst, Laquila, Italy
[2] IMT Sch Adv Studies, Lucca, Italy
[3] CNR, Inst Informat & Telemat IIT, Pisa, Italy
来源
INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2019, PT I | 2019年 / 11871卷
关键词
Twitter; Humans-bots interactions; Gullibility; Disinformation; Social networks; Data Mining; Supervised learning;
D O I
10.1007/978-3-030-33607-3_44
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Online Social Media represent a pervasive source of information able to reach a huge audience. Sadly, recent studies show how online social bots (automated, often malicious accounts, populating social networks and mimicking genuine users) are able to amplify the dissemination of (fake) information by orders of magnitude. Using Twitter as a benchmark, in this work we focus on what we define credulous users, i.e., human-operated accounts with a high percentage of bots among their followings. Being more exposed to the harmful activities of social bots, credulous users may run the risk of being more influenced than other users; even worse, although unknowingly, they could become spreaders of misleading information (e.g., by retweeting bots). We design and develop a supervised classifier to automatically recognize credulous users. The best tested configuration achieves an accuracy of 93.27% and AUC-ROC of 0.93, thus leading to positive and encouraging results.
引用
收藏
页码:402 / 410
页数:9
相关论文
共 29 条
  • [1] AHA DW, 1991, MACH LEARN, V6, P37, DOI 10.1007/BF00153759
  • [2] Recognizing human behaviours in online social networks
    Amato, Flora
    Castiglione, Aniello
    De Santo, Aniello
    Moscato, Vincenzo
    Picariello, Antonio
    Persia, Fabio
    Sperli, Giancarlo
    [J]. COMPUTERS & SECURITY, 2018, 74 : 355 - 370
  • [3] Balestrucci A., 2019, ACM S APPL COMP
  • [4] The Brexit Botnet and User-Generated Hyperpartisan News
    Bastos, Marco T.
    Mercea, Dan
    [J]. SOCIAL SCIENCE COMPUTER REVIEW, 2019, 37 (01) : 38 - 54
  • [5] Influence of fake news in Twitter during the 2016 US presidential election
    Bovet, Alexandre
    Makse, Hernan A.
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [6] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [7] Mean Birds: Detecting Aggression and Bullying on Twitter
    Chatzakou, Despoina
    Kourtellis, Nicolas
    Blackburn, Jeremy
    De Cristofaro, Emiliano
    Stringhini, Gianluca
    Vakali, Athena
    [J]. PROCEEDINGS OF THE 2017 ACM WEB SCIENCE CONFERENCE (WEBSCI '17), 2017, : 13 - 22
  • [8] Chavoshi N, 2016, IEEE DATA MINING, P817, DOI [10.1109/ICDM.2016.0096, 10.1109/ICDM.2016.86]
  • [9] Cohen W. W., 1995, MACH LEARN P, P115, DOI DOI 10.1016/B978-1-55860-377-6.50023-2
  • [10] Exploiting digital DNA for the analysis of similarities in Twitter behaviours
    Cresci, Stefano
    Di Pietron, Roberto
    Petrocchi, Marinella
    Spognardi, Angelo
    Tesconi, Maurizio
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2017, : 686 - 695