CONTINUITY OF COST FUNCTIONAL AND OPTIMAL FEEDBACK CONTROLS FOR THE STOCHASTIC NAVIER STOKES EQUATION IN 2D

被引:0
|
作者
Ugurlu, Kerem [1 ]
机构
[1] Univ Southern Calif, Dept Math, Los Angeles, CA 90089 USA
关键词
Stochastic Navier-Stokes equations; optimal control; stochastic analysis; STATIONARY SOLUTIONS; HILBERT-SPACE; EXISTENCE;
D O I
10.3934/cpaa.2017009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show the continuity of a specific cost functional J(phi) = E sup(t is an element of vertical bar 0,T vertical bar)(phi(L[t, u(phi)(t), phi(t)])) of the SNSE in 2D on an open bounded non periodic domain O with respect to a special set of feedback controls {phi(n)}(n >= 0), where phi(x) = log(1 + x)(1 - epsilon) with 0 < epsilon < 1.
引用
收藏
页码:189 / 207
页数:19
相关论文
共 50 条
  • [41] L2-Critical Nonuniqueness for the 2D Navier-Stokes Equations
    Cheskidov, Alexey
    Luo, Xiaoyutao
    ANNALS OF PDE, 2023, 9 (02)
  • [42] Global well posedness for the Maxwell-Navier-Stokes system in 2D
    Masmoudi, Nader
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2010, 93 (06): : 559 - 571
  • [43] Noise Effect on the 2D Stochastic Burgers Equation
    Dong, Zhao
    Wu, Jiang Lun
    Zhou, Guo Li
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2024, 40 (09) : 2065 - 2090
  • [44] Pathwise property of 2D non-autonomous stochastic Navier-Stokes equations with less regular or irregular noise
    Li, Xiaojun
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 408 : 166 - 200
  • [45] Maximum Principle for Some Optimal Control Problems Governed by 2D Nonlocal Cahn-Hillard-Navier-Stokes Equations
    Biswas, Tania
    Dharmatti, Sheetal
    Mohan, Manil T.
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2020, 22 (03)
  • [46] Global classical solutions to the 2D compressible Navier-Stokes equations with vacuum
    Ding, Shijin
    Huang, Bingyuan
    Liu, Xiaoling
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (08)
  • [47] Attractors for nonautonomous 2D Navier-Stokes equations with less regular symbols
    Ma, Shan
    Zhong, Chengkui
    Song, Haitao
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (09) : 4215 - 4222
  • [48] On the 2D compressible Navier-Stokes system with density-dependent viscosities
    Ducomet, Bernard
    Necasova, Sarka
    NONLINEARITY, 2013, 26 (06) : 1783 - 1797
  • [49] PULLBACK ATTRACTORS FOR 2D NAVIER-STOKES EQUATIONS WITH DELAYS AND THE FLATTENING PROPERTY
    Garcia-Luengo, Julia
    Marin-Rubio, Pedro
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (04) : 2127 - 2146
  • [50] On the asymptotic behaviour of 2D stationary Navier-Stokes solutions with symmetry conditions
    Decaster, Agathe
    Iftimie, Dragos
    NONLINEARITY, 2017, 30 (10) : 3951 - 3978