Enhanced spontaneous nucleation of diamond nuclei in hot and cold microwave plasma systems

被引:13
作者
Izak, Tibor [1 ]
Sveshnikov, Alexey [1 ]
Demo, Pavel [1 ]
Kromka, Alexander [1 ]
机构
[1] Acad Sci Czech Republic, Inst Phys, Prague 16253, Czech Republic
来源
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS | 2013年 / 250卷 / 12期
关键词
bimodal distribution function; focused microwave CVD; linear antenna microwave CVD; polycrystalline diamond films; self-nucleation; THIN-FILMS; GROWTH; CVD; DEPOSITION; SPECTROSCOPY; REACTOR; RAMAN; AREA;
D O I
10.1002/pssb.201300117
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
In this work, the diamond nucleation is studied using two different deposition systems: (i) focused microwave plasma (labeled as hot plasma) and (ii) pulsed-linear antenna microwave plasma (cold plasma). For the hot plasma, the influence of CH4 concentration in the hydrogen rich gas mixture on the self nucleation is investigated. It is found that higher CH4 concentration leads to increased diamond nucleation density, but also the amount of sp(2) carbon bonds increases within the deposits. In the cold plasma, we investigate the influence of CO2 addition into CH4/H-2 and total process pressure. Experimental results reveal a strong dependence of CO2 and pressure on spontaneous nucleation. The nucleation density (N-d) typical for non-treated substrates (approximate to 10(5)cm(-2)) is improved by four orders to 10(9)cm(-2) in cold plasma thanks to increased CH4 and CO2 concentrations. The highest nucleation density in the hot plasma system is still one order lower (approximate to 4x10(7)cm(-2)). Moreover, in cold plasma a bimodal distribution function of diamond clusters is observed for low ratios of CO2/H-2. Observed differences in N-d values are attributed to plasma properties and surface chemistry. Based on the experimental results, possible mechanisms contributing to the spontaneous nucleation process are discussed. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:2753 / 2758
页数:6
相关论文
共 24 条
[1]   Diamond overgrown InAlN/GaN HEMT [J].
Alomari, M. ;
Dipalo, M. ;
Rossi, S. ;
Diforte-Poisson, M. -A. ;
Delage, S. ;
Carlin, J. -F. ;
Grandjean, N. ;
Gaquiere, C. ;
Toth, L. ;
Pecz, B. ;
Kohn, E. .
DIAMOND AND RELATED MATERIALS, 2011, 20 (04) :604-608
[2]   Deposition of nanocrystalline diamond films on temperature sensitive substrates for infrared reflectance spectroscopy [J].
Babchenko, Oleg ;
Remes, Zdenek ;
Izak, Tibor ;
Rezek, Bohuslav ;
Kromka, Alexander .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2011, 248 (11) :2736-2739
[3]   Toward surface-friendly treatment of seeding layer and selected-area diamond growth [J].
Babchenko, Oleg ;
Izak, Tibor ;
Ukraintsev, Egor ;
Hruska, Karel ;
Rezek, Bohuslav ;
Kromka, Alexander .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2010, 247 (11-12) :3026-3029
[4]   Growth Dynamics of Nanocrystalline Diamond Thin Films Deposited by Hot Filament Chemical Vapor Deposition: Influence of Low Sticking and Renucleation Processes [J].
Buijnsters, Josephus G. ;
Vazquez, Luis .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (19) :9681-9691
[5]  
Feng W., 1996, J APPL PHYS, V79, P485
[6]  
Funer M, 1998, APPL PHYS LETT, V72, P1149, DOI 10.1063/1.120997
[7]   Bias enhanced nucleation of diamond thin films in a modified HFCVD reactor [J].
Izak, T. ;
Marton, M. ;
Varga, M. ;
Vojs, M. ;
Vesely, M. ;
Redhammer, R. ;
Michalka, M. .
VACUUM, 2009, 84 (01) :49-52
[8]   Low temperature diamond growth by linear antenna plasma CVD over large area [J].
Izak, Tibor ;
Babchenko, Oleg ;
Varga, Marian ;
Potocky, Stepan ;
Kromka, Alexander .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2012, 249 (12) :2600-2603
[9]   A simple bimodal model for the evolution of non-spherical particles undergoing nucleation, coagulation and coalescence [J].
Jeong, JI ;
Choi, M .
JOURNAL OF AEROSOL SCIENCE, 2003, 34 (08) :965-976
[10]  
Jirasek V., 2013, ADV SCI ENG MED, V5, P522, DOI DOI 10.1166/ASEM.2013.1324