Robustness and period sensitivity analysis of minimal models for biochemical oscillators

被引:17
作者
Caicedo-Casso, Angelica [1 ,2 ]
Kang, Hye-Won [3 ]
Lim, Sookkyung [1 ]
Hong, Christian I. [4 ]
机构
[1] Univ Cincinnati, Dept Math Sci, Cincinnati, OH 45221 USA
[2] Univ Valle, Dept Matemat, Cali, Valle, Colombia
[3] Univ Maryland Baltimore Cty, Dept Math & Stat, Baltimore, MD 21250 USA
[4] Univ Cincinnati, Dept Mol & Cellular Physiol, Cincinnati, OH 45267 USA
关键词
CIRCADIAN-RHYTHMS; NEGATIVE FEEDBACK; CELL-CYCLE; TEMPERATURE INDEPENDENCE; STOCHASTIC SIMULATION; LIMIT-CYCLES; CLOCK; NEUROSPORA; COMPENSATION; DYNAMICS;
D O I
10.1038/srep13161
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Biological systems exhibit numerous oscillatory behaviors from calcium oscillations to circadian rhythms that recur daily. These autonomous oscillators contain complex feedbacks with nonlinear dynamics that enable spontaneous oscillations. The detailed nonlinear dynamics of such systems remains largely unknown. In this paper, we investigate robustness and dynamical differences of five minimal systems that may underlie fundamental molecular processes in biological oscillatory systems. Bifurcation analyses of these five models demonstrate an increase of oscillatory domains with a positive feedback mechanism that incorporates a reversible reaction, and dramatic changes in dynamics with small modifications in the wiring. Furthermore, our parameter sensitivity analysis and stochastic simulations reveal different rankings of hierarchy of period robustness that are determined by the number of sensitive parameters or network topology. In addition, systems with autocatalytic positive feedback loop are shown to be more robust than those with positive feedback via inhibitory degradation regardless of noise type. We demonstrate that robustness has to be comprehensively assessed with both parameter sensitivity analysis and stochastic simulations.
引用
收藏
页数:13
相关论文
共 60 条
[1]  
[Anonymous], 1978, PROG THEOR BIOL, DOI 10.1016/C2013-0-07494-4
[2]   NEGATIVE FEEDBACK DEFINING A CIRCADIAN CLOCK - AUTOREGULATION OF THE CLOCK GENE-FREQUENCY [J].
ARONSON, BD ;
JOHNSON, KA ;
LOROS, JJ ;
DUNLAP, JC .
SCIENCE, 1994, 263 (5153) :1578-1584
[3]   Rewiring Cells: Synthetic Biology as a Tool to Interrogate the Organizational Principles of Living Systems [J].
Bashor, Caleb J. ;
Horwitz, Andrew A. ;
Peisajovich, Sergio G. ;
Lim, Wendell A. .
ANNUAL REVIEW OF BIOPHYSICS, VOL 39, 2010, 39 :515-537
[4]   ROLE OF FEEDBACK INHIBITION IN STABILIZING THE CLASSICAL OPERON [J].
BLISS, RD ;
PAINTER, PR ;
MARR, AG .
JOURNAL OF THEORETICAL BIOLOGY, 1982, 97 (02) :177-193
[5]   CONTROL OF OSCILLATING GLYCOLYSIS OF YEAST BY STOCHASTIC, PERIODIC, AND STEADY SOURCE OF SUBSTRATE - MODEL AND EXPERIMENTAL STUDY [J].
BOITEUX, A ;
GOLDBETER, A ;
HESS, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1975, 72 (10) :3829-3833
[6]   Analysis of a generic model of eukaryotic cell-cycle regulation [J].
Csikasz-Nagy, Attila ;
Battogtokh, Dorjsuren ;
Chen, Katherine C. ;
Novak, Bela ;
Tyson, John J. .
BIOPHYSICAL JOURNAL, 2006, 90 (12) :4361-4379
[7]   Molecular bases for circadian clocks [J].
Dunlap, JC .
CELL, 1999, 96 (02) :271-290
[8]   A Molecular Mechanism for Circadian Clock Negative Feedback [J].
Duong, Hao A. ;
Robles, Maria S. ;
Knutti, Darko ;
Weitz, Charles J. .
SCIENCE, 2011, 332 (6036) :1436-1439
[9]  
Fall CP., 2002, COMPUTATIONAL CELL B
[10]   Evidence for Neuronal Desynchrony in the Aged Suprachiasmatic Nucleus Clock [J].
Farajnia, Sahar ;
Michel, Stephan ;
Deboer, Tom ;
vanderLeest, Henk Tjebbe ;
Houben, Thijs ;
Rohling, Jos H. T. ;
Ramkisoensing, Ashna ;
Yasenkov, Roman ;
Meijer, Johanna H. .
JOURNAL OF NEUROSCIENCE, 2012, 32 (17) :5891-5899