Direct and highly productive conversion of cyanobacteria Arthrospira platensis to ethanol with CaCl2 addition

被引:20
作者
Aikawa, Shimpei [1 ,2 ,8 ]
Inokuma, Kentaro [1 ]
Wakai, Satoshi [1 ]
Sasaki, Kengo [1 ]
Ogino, Chiaki [3 ]
Chang, Jo-Shu [4 ,5 ,6 ]
Hasunuma, Tomohisa [1 ]
Kondo, Akihiko [1 ,7 ]
机构
[1] Kobe Univ, Grad Sch Sci Technol & Innovat, Nada Ku, 1-1 Rokkodai, Kobe, Hyogo 6578501, Japan
[2] Japan Sci & Technol Agcy, Core Res Evolut Sci & Technol, Chiyoda Ku, 3-5 Sanban Cho, Tokyo 1020075, Japan
[3] Kobe Univ, Grad Sch Engn, Nada Ku, 1-1 Rokkodai, Kobe, Hyogo 6578501, Japan
[4] Natl Cheng Kung Univ, Dept Chem Engn, Tainan 701, Taiwan
[5] Natl Cheng Kung Univ, Res Ctr Energy Technol & Strategy, Tainan 701, Taiwan
[6] Natl Cheng Kung Univ, Ctr Biosci & Biotechnol, Tainan 701, Taiwan
[7] RIKEN, Biomass Engn Program, Tsurumi Ku, 1-7-22 Suehiro, Yokohama, Kanagawa 2300045, Japan
[8] JIRCAS, Biol Resources & Postharvest Div, 1-1 Ohwashi, Tsukuba, Ibaraki 3058686, Japan
基金
日本科学技术振兴机构;
关键词
Ethanol conversion; Glycogen extraction; Cyanobacteria; Amylase-displaying yeast; Polysaccharide layer; Organic nutrient; CHLAMYDOMONAS-REINHARDTII BIOMASS; BIOETHANOL PRODUCTION; SACCHAROMYCES-CEREVISIAE; DIVALENT-CATIONS; OUTER-MEMBRANE; CELL-SURFACE; MICROALGAE; LIPOPOLYSACCHARIDE; FERMENTATION; PRETREATMENT;
D O I
10.1186/s13068-018-1050-y
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: The cyanobacterium Arthrospira platensis shows promise as a carbohydrate feedstock for biofuel production. The glycogen accumulated in A. platensis can be extracted by lysozyme-degrading the peptidoglycan layer of the bacterial cell walls. The extracted glycogen can be converted to ethanol through hydrolysis by amylolytic enzymes and fermentation by the yeast Saccharomyces cerevisiae. Thus, in the presence of lysozyme, a recombinant yeast expressing alpha-amylase and glucoamylase can convert A. platensis directly to ethanol, which would simplify the procedure for ethanol production. However, the ethanol titer and productivity in this process are lower than in ethanol production from cyanobacteria and green algae in previous reports. Results: To increase the ethanol titer, a high concentration of A. platensis biomass was employed as the carbon source for the ethanol production using a recombinant amylase-expressing yeast. The addition of lysozyme to the fermentation medium increased the ethanol titer, but not the ethanol productivity. The addition of -CaCl2 increased both the ethanol titer and productivity by causing the delamination of polysaccharide layer on the cell surface of A. platensis. In the presence of lysozyme and -CaCl2, ethanol titer, yield, and productivity improved to 48 g L-1, 93% of theoretical yield, and 1.0 g L-1 h(-1) from A. platensis, corresponding to 90 g L-1 of glycogen. Conclusions: We developed an ethanol conversion process using a recombinant amylase-expressing yeast from A. platensis with a high titer, yield, and productivity by adding both lysozyme and -CaCl2. The direct and highly productive conversion process from A. platensis via yeast fermentation could be applied to multiple industrial bulk chemicals.
引用
收藏
页数:9
相关论文
共 42 条
[11]   Surface polysaccharides enable bacteria to evade plant immunity [J].
D'Haeze, W ;
Holsters, M .
TRENDS IN MICROBIOLOGY, 2004, 12 (12) :555-561
[12]   Aquatic phototrophs: efficient alternatives to land-based crops for biofuels [J].
Dismukes, G. Charles ;
Carrieri, Damian ;
Bennette, Nicholas ;
Ananyev, Gennady M. ;
Posewitz, Matthew C. .
CURRENT OPINION IN BIOTECHNOLOGY, 2008, 19 (03) :235-240
[13]   Combined algal processing: A novel integrated biorefinery process to produce algal biofuels and bioproducts [J].
Dong, Tao ;
Knoshaug, Eric P. ;
Davis, Ryan ;
Laurens, Lieve M. L. ;
Van Wychen, Stefanie ;
Pienkos, Philip T. ;
Nagle, Nick .
ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS, 2016, 19 :316-323
[14]   PRODUCTION, ISOLATION AND PRELIMINARY CHARACTERIZATION OF THE EXOPOLYSACCHARIDE OF THE CYANOBACTERIUM SPIRULINA-PLATENSIS [J].
FILALIMOUHIM, R ;
CORNET, JF ;
FONTAINE, T ;
FOURNET, B ;
DUBERTRET, G .
BIOTECHNOLOGY LETTERS, 1993, 15 (06) :567-572
[15]   Divalent cations affect chain mobility and aggregate structure of lipopolysaccharide from Salmonella minnesota reflected in a decrease of its biological activity [J].
Garidel, P ;
Rappolt, M ;
Schromm, AB ;
Howe, J ;
Lohner, K ;
Andrä, J ;
Koch, MHJ ;
Brandenburg, K .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2005, 1715 (02) :122-131
[16]   Consolidated bioprocessing and simultaneous saccharification and fermentation of lignocellulose to ethanol with thermotolerant yeast strains [J].
Hasunuma, Tomohisa ;
Kondo, Akihiko .
PROCESS BIOCHEMISTRY, 2012, 47 (09) :1287-1294
[17]   Feasibility of CO2 mitigation and carbohydrate production by microalga Scenedesmus obliquus CNW-N used for bioethanol fermentation under outdoor conditions: effects of seasonal changes [J].
Ho, Shih-Hsin ;
Chen, Yi-Di ;
Chang, Ching-Yu ;
Lai, Yen-Ying ;
Chen, Chun-Yen ;
Kondo, Akihiko ;
Ren, Nan-Qi ;
Chang, Jo-Shu .
BIOTECHNOLOGY FOR BIOFUELS, 2017, 10
[18]   Bioethanol production, using carbohydrate-rich microalgae biomass as feedstock [J].
Ho, Shih-Hsin ;
Huang, Shu-Wen ;
Chen, Chun-Yen ;
Hasunuma, Tomohisa ;
Kondo, Akihiko ;
Chang, Jo-Shu .
BIORESOURCE TECHNOLOGY, 2013, 135 :191-198
[19]   Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries [J].
Hong, Kuk-Ki ;
Nielsen, Jens .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2012, 69 (16) :2671-2690
[20]   Efficient co-displaying and artificial ratio control of α-amylase and glucoamylase on the yeast cell surface by using combinations of different anchoring domains [J].
Inokuma, Kentaro ;
Yoshida, Takanobu ;
Ishii, Jun ;
Hasunuma, Tomohisa ;
Kondo, Akihiko .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2015, 99 (04) :1655-1663