A locking-free solver for linear elasticity on quadrilateral and hexahedral meshes based on enrichment of Lagrangian elements

被引:7
作者
Harper, Graham [1 ]
Wang, Ruishu [2 ]
Liu, Jiangguo [1 ]
Tavener, Simon [1 ]
Zhang, Ran [2 ]
机构
[1] Colorado State Univ, Dept Math, Ft Collins, CO 80523 USA
[2] Jilin Univ, Sch Math Sci, Changchun 130012, Jilin, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金; 美国国家科学基金会;
关键词
Enrichment of Lagrangian elements; Hexahedral meshes; Linear elasticity; Locking-free; Quadrilateral meshes; Deal.II implementation; MIXED FINITE-ELEMENT; INCOMPRESSIBLE ELASTICITY;
D O I
10.1016/j.camwa.2020.07.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a new finite element solver for linear elasticity on quadrilateral and hexahedral meshes based on enrichment of the classical bilinear or trilinear Lagrangian elements. It solves the primal variable displacement in the strain-div formulation and can handle both displacement and traction boundary conditions. It is a locking-free solver based on conforming finite elements. The solver has second order accuracy in displacement and first order accuracy in stress and dilation (divergence of displace-ment), as validated by theoretical analysis and illustrated by numerical experiments on benchmarks. deal.II implementation is also discussed. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1578 / 1595
页数:18
相关论文
共 38 条
  • [1] [Anonymous], 2007, MATH THEORY FINITE E
  • [2] [Anonymous], 2012, HIGH PERFORMANCE VIS
  • [3] The deal.II library, Version 9.1
    Arndt, Daniel
    Bangerth, Wolfgang
    Clevenger, Thomas C.
    Davydov, Denis
    Fehling, Marc
    Garcia-Sanchez, Daniel
    Harper, Graham
    Heister, Timo
    Heltai, Luca
    Kronbichler, Martin
    Kynch, Ross Maguire
    Maier, Matthias
    Pelteret, Jean-Paul
    Turcksin, Bruno
    Wells, David
    [J]. JOURNAL OF NUMERICAL MATHEMATICS, 2019, 27 (04) : 203 - 213
  • [4] Approximation by quadrilateral finite elements
    Arnold, DN
    Boffi, D
    Falk, RS
    [J]. MATHEMATICS OF COMPUTATION, 2002, 71 (239) : 909 - 922
  • [5] Rectangular mixed finite elements for elasticity
    Arnold, DN
    Awanou, G
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (09) : 1417 - 1429
  • [6] Mixed finite elements for elasticity
    Arnold, DN
    Winther, R
    [J]. NUMERISCHE MATHEMATIK, 2002, 92 (03) : 401 - 419
  • [7] Mixed finite elements for elasticity on quadrilateral meshes
    Arnold, Douglas N.
    Awanou, Gerard
    Qiu, Weifeng
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2015, 41 (03) : 553 - 572
  • [8] A rotated nonconforming rectangular mixed element for elasticity
    Awanou, Gerard
    [J]. CALCOLO, 2009, 46 (01) : 49 - 60
  • [9] BERNARDI C, 1985, MATH COMPUT, V44, P71, DOI 10.1090/S0025-5718-1985-0771031-7
  • [10] Brenner SC, 2004, MATH COMPUT, V73, P1067