2D stochastic Navier-Stokes equations driven by jump noise

被引:71
作者
Brzezniak, Zdzislaw [1 ]
Hausenblas, Erika [2 ]
Zhu, Jiahui [3 ,4 ]
机构
[1] Univ York, Dept Math, York YO10 5DD, N Yorkshire, England
[2] Univ Leoben, Dept Math & Informat Technol, A-8700 Leoben, Austria
[3] Delft Univ Technol, Delft Inst Appl Math, POB 5031, NL-2600 GA Delft, Netherlands
[4] Zhejiang Univ Finance & Econ, Sch Finance, Hangzhou 310018, Zhejiang, Peoples R China
基金
奥地利科学基金会;
关键词
Stochastic Navier-Stokes equations; Levy noise; GLOBAL-SOLUTIONS; ERGODICITY; EXISTENCE;
D O I
10.1016/j.na.2012.10.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper, we are studying the existence and uniqueness of the solution of an abstract nonlinear equation driven by a multiplicative noise of Levy type. Our result is formulated in an abstract setting. This type of equation covers the stochastic 2D Navier-Stokes Equations, the 2D stochastic Magneto-Hydrodynamic Equations, the 2D stochastic Boussinesq Model for the Benard Convection, the 2D stochastic Magnetic Bernard Problem, the 3D stochastic Leray alpha-Model for the Navier-Stokes Equations and several stochastic Shell Models of turbulence. (C) 2013 Published by Elsevier Ltd
引用
收藏
页码:122 / 139
页数:18
相关论文
共 41 条
[1]   Existence of global solutions and invariant measures for stochastic differential equations driven by Poisson type noise with non-Lipschitz coefficients [J].
Albeverio, Sergio ;
Brzezniak, Zdzislaw ;
Wu, Jiang-Lun .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 371 (01) :309-322
[2]  
[Anonymous], 2010, THESIS
[3]  
[Anonymous], 2009, PREPRINT
[4]  
Brezezniak Z., 1991, Mathematical Models & Methods in Applied Sciences, V1, P41, DOI 10.1142/S0218202591000046
[5]   Ergodicity of the 2D Navier-Stokes equations with random forcing [J].
Bricmont, J ;
Kupiainen, A ;
Lefevere, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 224 (01) :65-81
[6]  
Brzezniak Z, 2001, ANN PROBAB, V29, P1796
[7]   STOCHASTIC NAVIER-STOKES EQUATIONS WITH MULTIPLICATIVE NOISE [J].
BRZEZNIAK, Z ;
CAPINSKI, M ;
FLANDOLI, F .
STOCHASTIC ANALYSIS AND APPLICATIONS, 1992, 10 (05) :523-532
[8]  
Brzezniak Z., 2010, PREPRINT
[9]   Strong solutions for SPDE with locally monotone coefficients driven by Levy noise [J].
Brzezniak, Zdzislaw ;
Liu, Wei ;
Zhu, Jiahui .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2014, 17 :283-310
[10]   Maximal regularity for stochastic convolutions driven by L,vy processes [J].
Brzezniak, Zdzislaw ;
Hausenblas, Erika .
PROBABILITY THEORY AND RELATED FIELDS, 2009, 145 (3-4) :615-637