Decentralized guaranteed cost dynamic control for synchronization of a complex dynamical network with randomly switching topology

被引:52
作者
Lee, Tae H. [1 ]
Ji, D. H. [3 ]
Park, Ju H. [1 ]
Jung, H. Y. [2 ]
机构
[1] Yeungnam Univ, Dept Elect Engn, Nonlinear Dynam Grp, Kyongsan 712749, South Korea
[2] Yeungnam Univ, Dept Informat & Commun Engn, Nonlinear Dynam Grp, Kyongsan 712749, South Korea
[3] Samsung Elect Co Ltd, Digital Media & Commun, Div Mobile Commun, Suwon 4162, South Korea
关键词
Complex network; Synchronization; Guaranteed cost problem; Decentralized dynamic controller; Randomly switching topology; OUTPUT-FEEDBACK CONTROL; DIFFERENTIAL-SYSTEMS; PASSIVITY ANALYSIS; NEURAL-NETWORKS; DELAY; STABILIZATION;
D O I
10.1016/j.amc.2012.07.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers synchronization problem of a complex dynamical network with randomly switching topology which means that the topology of a complex network probabilistically switches. For this problem, a decentralized guaranteed cost dynamic feedback controller is designed to achieve the synchronization of the network. Based on Lyapunov stability theory and linear matrix inequality framework, the existence condition for feasible controllers is derived in terms of linear matrix inequalities. Finally, the proposed method is applied to two numerical examples in order to show the effectiveness of our result. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:996 / 1010
页数:15
相关论文
共 35 条
[1]  
[Anonymous], 1994, LINEAR MATRIX INEQUA
[2]   Passivity analysis of neural networks with Markovian jumping parameters and interval time-varying delays [J].
Balasubramaniam, P. ;
Nagamani, G. .
NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2010, 4 (04) :853-864
[3]   Passivity analysis for neural networks of neutral type with Markovian jumping parameters and time delay in the leakage term [J].
Balasubramaniam, P. ;
Nagamani, G. ;
Rakkiyappan, R. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (11) :4422-4437
[4]   A delay decomposition approach to delay-dependent passivity analysis for interval neural networks with time-varying delay [J].
Balasubramaniam, P. ;
Nagamani, G. .
NEUROCOMPUTING, 2011, 74 (10) :1646-1653
[5]   Global Robust Passivity Analysis for Stochastic Interval Neural Networks with Interval Time-Varying Delays and Markovian Jumping Parameters [J].
Balasubramaniam, P. ;
Nagamani, G. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 149 (01) :197-215
[6]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[7]  
Chua L. O., 2000, IEEE T CIRCUITS SYST, VI, P1072
[8]   Evolution of networks [J].
Dorogovtsev, SN ;
Mendes, JFF .
ADVANCES IN PHYSICS, 2002, 51 (04) :1079-1187
[9]  
ERDOS P, 1960, B INT STATIST INST, V38, P343
[10]  
Erdos P., 1959, PUBL MATH-DEBRECEN, V6, P290, DOI DOI 10.5486/PMD.1959.6.3-4.12