On Gaussian comparison inequality and its application to spectral analysis of large random matrices

被引:8
作者
Han, Fang [1 ]
Xu, Sheng [2 ]
Zhou, Wen-Xin [3 ,4 ]
机构
[1] Univ Washington, Dept Stat, Seattle, WA 98195 USA
[2] Yale Univ, Dept Stat, New Haven, CT 06511 USA
[3] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
[4] Princeton Univ, Dept Operat Res & Financial Engn, Princeton, NJ 08544 USA
关键词
extreme value theory; Gaussian comparison inequality; random matrix theory; Roy's largest root test; spectral analysis; DIMENSIONAL COVARIANCE MATRICES; PRINCIPAL-COMPONENTS-ANALYSIS; ASYMPTOTIC-DISTRIBUTION; EMPIRICAL PROCESSES; LARGEST EIGENVALUE; SAMPLE ROOTS; DISTRIBUTIONS; UNIVERSALITY; ENSEMBLES; TESTS;
D O I
10.3150/16-BEJ912
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Recently, Chernozhukov, Chetverikov, and Kato (Ann. Statist. 42 (2014) 1564-1597) developed a new Gaussian comparison inequality for approximating the suprema of empirical processes. This paper exploits this technique to devise sharp inference on spectra of large random matrices. In particular, we show that two long-standing problems in random matrix theory can be solved: (i) simple bootstrap inference on sample eigenvalues when true eigenvalues are tied; (ii) conducting two-sample Roy's covariance test in high dimensions. To establish the asymptotic results, a generalized e-net argument regarding the matrix rescaled spectral norm and several new empirical process bounds are developed and of independent interest.
引用
收藏
页码:1787 / 1833
页数:47
相关论文
共 45 条
  • [1] A tail inequality for suprema of unbounded empirical processes with applications to Markov chains
    Adamczak, Radoslaw
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2008, 13 : 1000 - 1034
  • [2] Anderson T.W., 2003, Wiley Series in Probability and Statistics
  • [3] ASYMPTOTIC THEORY FOR PRINCIPAL COMPONENT ANALYSIS
    ANDERSON, TW
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1963, 34 (01): : 122 - &
  • [4] [Anonymous], 1990, MONOGRAPHS STAT APPL
  • [5] [Anonymous], 1996, Springer Series in Statistics, DOI DOI 10.1007/978-1-4757-2545-2
  • [6] [Anonymous], 1982, WILEY SERIES PROBABI
  • [7] UNIVERSALITY FOR THE LARGEST EIGENVALUE OF SAMPLE COVARIANCE MATRICES WITH GENERAL POPULATION
    Bao, Zhigang
    Pan, Guangming
    Zhou, Wang
    [J]. ANNALS OF STATISTICS, 2015, 43 (01) : 382 - 421
  • [8] BOOTSTRAP TESTS AND CONFIDENCE-REGIONS FOR FUNCTIONS OF A COVARIANCE-MATRIX
    BERAN, R
    SRIVASTAVA, MS
    [J]. ANNALS OF STATISTICS, 1985, 13 (01) : 95 - 115
  • [9] OPTIMAL DETECTION OF SPARSE PRINCIPAL COMPONENTS IN HIGH DIMENSION
    Berthet, Quentin
    Rigollet, Philippe
    [J]. ANNALS OF STATISTICS, 2013, 41 (04) : 1780 - 1815
  • [10] SPARSE PCA: OPTIMAL RATES AND ADAPTIVE ESTIMATION
    Cai, T. Tony
    Ma, Zongming
    Wu, Yihong
    [J]. ANNALS OF STATISTICS, 2013, 41 (06) : 3074 - 3110