Metabolic differentiation in the embryonic retina

被引:137
作者
Agathocleous, Michalis [1 ,2 ]
Love, Nicola K. [1 ]
Randlett, Owen [1 ]
Harris, Julia J. [3 ]
Liu, Jinyue [1 ]
Murray, Andrew J. [1 ]
Harris, William A. [1 ]
机构
[1] Univ Cambridge, Dept Physiol Dev & Neurosci, Cambridge CB2 3DY, England
[2] Univ Cambridge Gonville & Caius Coll, Cambridge CB2 1TA, England
[3] UCL, Dept Neurosci Physiol & Pharmacol, London WC1E 6BT, England
基金
英国惠康基金;
关键词
AEROBIC GLYCOLYSIS; STEM-CELL; GLYCOGEN; PROLIFERATION; XENOPUS; TISSUE; COMPARTMENTALIZATION; PROGENITORS; EXPRESSION; LIVER;
D O I
10.1038/ncb2531
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Unlike healthy adult tissues, cancers produce energy mainly by aerobic glycolysis instead of oxidative phosphorylation(1). This adaptation, called the Warburg effect, may be a feature of all dividing cells, both normal and cancerous(2), or it may be specific to cancers(3). It is not known whether, in a normally growing tissue during development, proliferating and postmitotic cells produce energy in fundamentally different ways. Here we show in the embryonic Xenopus retina in vivo, that dividing progenitor cells depend less on oxidative phosphorylation for ATP production than non-dividing differentiated cells, and instead use glycogen to fuel aerobic glycolysis. The transition from glycolysis to oxidative phosphorylation is connected to the cell differentiation process. Glycolysis is indispensable for progenitor proliferation and biosynthesis, even when it is not used for ATP production. These results suggest that the Warburg effect can be a feature of normal proliferation in vivo, and that the regulation of glycolysis and oxidative phosphorylation is critical for normal development.
引用
收藏
页码:859 / U180
页数:12
相关论文
共 33 条
[1]   From Progenitors to Differentiated Cells in the Vertebrate Retina [J].
Agathocleous, Michalis ;
Harris, William A. .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 2009, 25 :45-69
[2]   E3 ubiquitin ligase APC/C-Cdh1 accounts for the Warburg effect by linking glycolysis to cell proliferation [J].
Almeida, Angeles ;
Bolanos, Juan P. ;
Moncada, Salvador .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (02) :738-741
[3]   A reduction in ATP demand and mitochondrial activity with neural differentiation of human embryonic stem cells [J].
Birket, Matthew J. ;
Orr, Adam L. ;
Gerencser, Akos A. ;
Madden, David T. ;
Vitelli, Cathy ;
Swistowski, Andrzej ;
Brand, Martin D. ;
Zeng, Xianmin .
JOURNAL OF CELL SCIENCE, 2011, 124 (03) :348-358
[4]   Aerobic glycolysis by proliferating cells: A protective strategy against reactive oxygen species [J].
Brand, KA ;
Hermfisse, U .
FASEB JOURNAL, 1997, 11 (05) :388-395
[5]   MAMMALIAN MOTOR UNITS - PHYSIOLOGICAL-HISTOCHEMICAL CORRELATION IN 3 TYPES IN CAT GASTROCNEMIUS [J].
BURKE, RE ;
LEVINE, DN ;
ZAJAC, FE ;
TSAIRIS, P ;
ENGEL, WK .
SCIENCE, 1971, 174 (4010) :709-&
[6]   Regulation of cancer cell metabolism [J].
Cairns, Rob A. ;
Harris, Isaac S. ;
Mak, Tak W. .
NATURE REVIEWS CANCER, 2011, 11 (02) :85-95
[7]   CellProfiler: image analysis software for identifying and quantifying cell phenotypes [J].
Carpenter, Anne E. ;
Jones, Thouis Ray ;
Lamprecht, Michael R. ;
Clarke, Colin ;
Kang, In Han ;
Friman, Ola ;
Guertin, David A. ;
Chang, Joo Han ;
Lindquist, Robert A. ;
Moffat, Jason ;
Golland, Polina ;
Sabatini, David M. .
GENOME BIOLOGY, 2006, 7 (10)
[8]   Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells [J].
Chung S. ;
Dzeja P.P. ;
Faustino R.S. ;
Perez-Terzic C. ;
Behfar A. ;
Terzic A. .
Nature Clinical Practice Cardiovascular Medicine, 2007, 4 (Suppl 1) :S60-S67
[9]   The Relationship Between Pluripotency and Mitochondrial DNA Proliferation During Early Embryo Development and Embryonic Stem Cell Differentiation [J].
Facucho-Oliveira, J. M. ;
St John, J. C. .
STEM CELL REVIEWS AND REPORTS, 2009, 5 (02) :140-158
[10]   Why do cancers have high aerobic glycolysis? [J].
Gatenby, RA ;
Gillies, RJ .
NATURE REVIEWS CANCER, 2004, 4 (11) :891-899