Razumikhin method and exponential stability of hybrid stochastic delay interval systems

被引:77
作者
Mao, XR [1 ]
Lam, J
Xu, SY
Gao, HJ
机构
[1] Univ Strathclyde, Dept Stat & Modelling Sci, Glasgow G1 1XH, Lanark, Scotland
[2] Univ Hong Kong, Dept Mech Engn, Hong Kong, Hong Kong, Peoples R China
[3] Nanjing Univ Sci & Technol, Dept Automat, Nanjing 210094, Peoples R China
[4] Harbin Inst Technol, Inertial Navigat Ctr, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
interval matrix; Razumikhin method; Brownian motion; Markov chain; m-matrix; exponential stability;
D O I
10.1016/j.jmaa.2005.03.056
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the exponential stability of hybrid stochastic delay interval systems (also known as stochastic delay interval systems with Markovian switching). The known results in this area (see, e.g., [X., Mao, Exponential stability of stochastic delay interval systems with Markovian switching, IEEE Trans. Automat. Control 47 (10) (2002) 1604-1612]) require the time delay to be a constant or a differentiable function and the main reason for such a restriction is due to the analysis of mathematics. The main aim of this paper is to remove this restriction to allow the time delay to be a bounded variable only. The Razumikhin method is developed to cope with the difficulty arisen from the nondifferentiability of the time delay. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:45 / 66
页数:22
相关论文
共 21 条
[1]   Stability of a random diffusion with linear drift [J].
Basak, GK ;
Bisi, A ;
Ghosh, MK .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 202 (02) :604-622
[2]  
Berman A., 1994, CLASSICS APPL MATH, DOI [10.1016/C2013-0-10361-3, 10.1137/1.9781611971262, DOI 10.1137/1.9781611971262]
[3]  
HAN HS, 1993, CONTR-THEOR ADV TECH, V9, P745
[4]  
Hasminskii R., 1981, STOCHASTIC STABILITY
[5]   CONTROLLABILITY, STABILIZABILITY, AND CONTINUOUS-TIME MARKOVIAN JUMP LINEAR QUADRATIC CONTROL [J].
JI, YD ;
CHIZECK, HJ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1990, 35 (07) :777-788
[6]  
Kolmanovskii V., 1992, APPL THEORY FUNCTION
[7]  
Ladde G. S., 1980, Random Differential Inequalities
[8]   Exponential stability of stochastic delay interval systems [J].
Liao, XX ;
Mao, X .
SYSTEMS & CONTROL LETTERS, 2000, 40 (03) :171-181
[9]  
Mao X., 1997, Stochastic Differential Equations and Applications
[10]  
Mao X., 1999, FUNCTIONAL DIFFERENT, V6, P375