AutoRec: Autoencoders Meet Collaborative Filtering

被引:783
作者
Sedhain, Suvash [1 ,2 ]
Menon, Aditya Krishna [1 ,2 ]
Sanner, Scott [1 ,2 ]
Xie, Lexing [1 ,2 ]
机构
[1] NICTA, Sydney, NSW, Australia
[2] Australian Natl Univ, Canberra, ACT 0200, Australia
来源
WWW'15 COMPANION: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB | 2015年
关键词
Recommender Systems; Collaborative Filtering; Autoencoders;
D O I
10.1145/2740908.2742726
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper proposes AutoRec, a novel autoencoder framework for collaborative filtering (CF). Empirically, AutoRec's compact and efficiently trainable model outperforms state-of-the-art CF techniques (biased matrix factorization, RBMCF and LLORMA) on the Movielens and Netflix datasets.
引用
收藏
页码:111 / 112
页数:2
相关论文
共 5 条
  • [1] [Anonymous], 2007, ICML
  • [2] [Anonymous], 2001, WWW
  • [3] [Anonymous], 1993, IEEE INT C NEUR NETW
  • [4] MATRIX FACTORIZATION TECHNIQUES FOR RECOMMENDER SYSTEMS
    Koren, Yehuda
    Bell, Robert
    Volinsky, Chris
    [J]. COMPUTER, 2009, 42 (08) : 30 - 37
  • [5] Lee J., 2013, ICML