COMMENSURABLE CONTINUED FRACTIONS

被引:4
作者
Arnoux, Pierre [1 ]
Schmidt, Thomas A. [2 ]
机构
[1] Univ Aix Marseille, CNRS, UMR6206, Inst Math Luminy, F-13288 Marseille 09, France
[2] Oregon State Univ, Dept Math, Corvallis, OR 97331 USA
关键词
Continued fractions; natural extension; Moebius transformations; geodesic flow; Fuchsian groups; SYMBOLIC DYNAMICS; NATURAL EXTENSIONS; ROSEN FRACTIONS; TRIANGLE GROUPS; GEODESIC-FLOWS; SURFACES;
D O I
10.3934/dcds.2014.34.4389
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We compare two families of continued fractions algorithms, the symmetrized Rosen algorithm and the Veech algorithm. Each of these algorithms expands real numbers in terms of certain algebraic integers. We give explicit models of the natural extension of the maps associated with these algorithms; prove that these natural extensions are in fact conjugate to the first return map of the geodesic Flow on a related surface; and, deduce that, up to a conjugacy, almost every real number has an infinite number of common approximants for both algorithms.
引用
收藏
页码:4389 / 4418
页数:30
相关论文
共 25 条
[1]   GEODESIC-FLOWS, INTERVAL MAPS, AND SYMBOLIC DYNAMICS [J].
ADLER, R ;
FLATTO, L .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 25 (02) :229-334
[2]  
Adler R.L., 1975, ERGODIC THEORY
[3]  
[Anonymous], 1992, GEOM FUNCT ANAL, DOI DOI 10.1007/BF01896876
[4]  
Arnoux P, 2000, J ANAL MATH, V81, P35, DOI 10.1007/BF02788985
[5]  
Arnoux P., NATURAL EXTENS UNPUB
[6]  
Arnoux P., 1994, Enseign. Math, V40, P29
[7]   Cross sections for geodesic flows and α-continued fractions [J].
Arnoux, Pierre ;
Schmidt, Thomas A. .
NONLINEARITY, 2013, 26 (03) :711-726
[8]   VEECH SURFACES WITH NONPERIODIC DIRECTIONS IN THE TRACE FIELD [J].
Arnoux, Pierre ;
Schmidt, Thomas A. .
JOURNAL OF MODERN DYNAMICS, 2009, 3 (04) :611-629
[9]   Natural extensions for the Rosen fractions [J].
Burton, RM ;
Kraaikamp, C ;
Schmidt, TA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (03) :1277-1298
[10]  
Dajani K., 2002, Carus Mathematical Monographs, V29