Inequalities for the moments of stochastic integrals and stochastic Volterra equations driven a two-parameter wiener process

被引:0
作者
Kolodii, N. A. [1 ]
机构
[1] Volgograd State Univ, Volgograd, Russia
关键词
two-parameter Wiener process; stochastic Volterra equation; stopping line;
D O I
10.1134/S003744661305008X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove existence and uniqueness theorems for a solution to a stochastic Volterra equation on the plane. The proofs employ an inequality for a stochastic integral with respect to a two-parameter Wiener process, where the integrand depends on the limits of integration.
引用
收藏
页码:829 / 840
页数:12
相关论文
共 10 条
[1]  
Dozzi M., 1991, MATH RES, V61, P17
[2]  
Gikhman I. I., 1968, STOCHASTIC PARTIAL D
[3]  
Gushchin A. A., 1991, THEORY PROBAB MATH S, V42, P29
[4]   ON THE GENERAL-THEORY OF RANDOM-FIELDS ON THE PLANE [J].
GUSHCHIN, AA .
RUSSIAN MATHEMATICAL SURVEYS, 1982, 37 (06) :55-80
[5]   Gromyall-Bellman type integral inequalities in measure spaces [J].
Horvath, L .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 202 (01) :183-193
[6]  
Klepcina M. L., 1984, THEOR PROBAB APPL, V29, P154
[7]  
Kolodii A. M., 2000, THEORY STOCH PROCESS, V6, P54
[8]  
Kolodii AM, 1994, PROBABILITY THEORY AND MATHEMATICAL STATISTICS, P405
[9]   STOCHASTIC VOLTERRA-EQUATIONS WITH ANTICIPATING COEFFICIENTS [J].
PARDOUX, E ;
PROTTER, P .
ANNALS OF PROBABILITY, 1990, 18 (04) :1635-1655
[10]   STOCHASTIC CALCULATION DEPENDENT ON PARAMETER [J].
STRICKER, C ;
YOR, M .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1978, 45 (02) :109-133