Absolute negative mobility induced by fractional Gaussian noise

被引:4
作者
Li, Jia-jian [1 ]
Xie, Hui-zhang [2 ]
Li, Teng-Chao [1 ]
Ai, Bao-quan [1 ]
机构
[1] South China Normal Univ, Sch Phys & Telecommun Engn, Guangdong Prov Key Lab Quantum Engn & Quantum Mat, Guangzhou 510006, Peoples R China
[2] South China Univ Technol, Sch Phys, Guangzhou 510641, Peoples R China
基金
中国国家自然科学基金;
关键词
Brownian motor; Absolute negative mobility; Fractional Gaussian noise; GENERATION; RESISTANCE; TRANSPORT;
D O I
10.1016/j.physa.2020.125164
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Transport of underdamped Brownian particles driven by fractional Gaussian noise in a periodic potential is numerically investigated in the presence of a dc force and an ac force. Within particular parameter regimes, this system exhibits absolute negative mobility, which means that the particles can travel in the direction opposite to the constant force. We demonstrate that fractional Gaussian noise can strongly affect the appearance of the absolute negative mobility. It is found that fraction Gaussian noise in the persistent case can induce the appearance of double absolute negative mobility in two different parameter ranges, while the absolute negative mobility occurs in only one parameter interval in the antipersistent case. As the Hurst exponent increases, the negative mobility strengthens monotonously for the persistent case, whereas the change in Hurst exponent hardly affects the transport behavior for the antipersistent case. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
[41]   Analysis of Moments Based Methods for Fractional Gaussian Noise Estimation [J].
Mossberg, Magnus .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (07) :3823-3827
[42]   Response of MDOF nonlinear system with fractional derivative damping and driven by fractional Gaussian noise [J].
Lu, Qiangfeng ;
Zhu, Weiqiu ;
Deng, Maolin .
ENGINEERING STRUCTURES, 2024, 318
[43]   Numerical Approximation of Optimal Convergence for Fractional Elliptic Equations with Additive Fractional Gaussian Noise [J].
Hao, Zhaopeng ;
Zhang, Zhongqiang .
SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2021, 9 (03) :1013-1033
[44]   Comment on 'Absolute negative mobility in a one-dimensional overdamped system' [J].
Spiechowicz, J. ;
Kostur, M. ;
Luczka, J. .
PHYSICS LETTERS A, 2016, 380 (16) :1499-1501
[45]   Absolute negative mobility of charge carriers in diamond and interpretation of μSR experiments [J].
Baturin, AS ;
Gorelkin, VN ;
Rastunkov, VS ;
Soloviev, VR .
PHYSICA B-CONDENSED MATTER, 2006, 374 :340-346
[46]   Multipartite entanglement and purity dynamics in channels influenced by fractional Gaussian noise [J].
Javed, Muhammad ;
Rahman, Atta Ur ;
Kenfack, Lionel Tenemeza ;
Safi, Salman Khan .
PHYSICS LETTERS A, 2023, 459
[47]   Positive role of fractional Gaussian noise in FitzHugh?Nagumo neuron model [J].
Gao, Fengyin ;
Kang, Yanmei .
CHAOS SOLITONS & FRACTALS, 2021, 146
[48]   Thermodynamic description of active brownian particle driven by fractional gaussian noise [J].
Rangaig, Norodin A. .
PHYSICA SCRIPTA, 2024, 99 (02)
[49]   Two approximation methods to synthesize the power spectrum of fractional Gaussian noise [J].
Ledesma, Sergio ;
Liu, Derong ;
Hernandez, Donato .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 52 (02) :1047-1062
[50]   Correlation Dimension of Fractional Gaussian Noise: New Evidence from Wavelets [J].
Dhifaoui, Zouhaier ;
Kortas, Hedi ;
Benammou, Samir .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (04)