Absolute negative mobility induced by fractional Gaussian noise

被引:4
作者
Li, Jia-jian [1 ]
Xie, Hui-zhang [2 ]
Li, Teng-Chao [1 ]
Ai, Bao-quan [1 ]
机构
[1] South China Normal Univ, Sch Phys & Telecommun Engn, Guangdong Prov Key Lab Quantum Engn & Quantum Mat, Guangzhou 510006, Peoples R China
[2] South China Univ Technol, Sch Phys, Guangzhou 510641, Peoples R China
基金
中国国家自然科学基金;
关键词
Brownian motor; Absolute negative mobility; Fractional Gaussian noise; GENERATION; RESISTANCE; TRANSPORT;
D O I
10.1016/j.physa.2020.125164
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Transport of underdamped Brownian particles driven by fractional Gaussian noise in a periodic potential is numerically investigated in the presence of a dc force and an ac force. Within particular parameter regimes, this system exhibits absolute negative mobility, which means that the particles can travel in the direction opposite to the constant force. We demonstrate that fractional Gaussian noise can strongly affect the appearance of the absolute negative mobility. It is found that fraction Gaussian noise in the persistent case can induce the appearance of double absolute negative mobility in two different parameter ranges, while the absolute negative mobility occurs in only one parameter interval in the antipersistent case. As the Hurst exponent increases, the negative mobility strengthens monotonously for the persistent case, whereas the change in Hurst exponent hardly affects the transport behavior for the antipersistent case. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
[21]   An EMD based simulation of fractional Gaussian noise [J].
Shan, Peiwei ;
Li, Ming .
WSEAS: INSTRUMENTATION, MEASUREMENT, CIRCUITS AND SYSTEMS, 2008, :72-76
[22]   Fractional Brownian motion, fractional Gaussian noise, and Tsallis permutation entropy [J].
Zunino, L. ;
Perez, D. G. ;
Kowalski, A. ;
Martin, M. T. ;
Garavaglia, M. ;
Plastino, A. ;
Rosso, O. A. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (24) :6057-6068
[23]   Deconvolution model with fractional Gaussian noise: A minimax study [J].
Benhaddou, Rida .
STATISTICS & PROBABILITY LETTERS, 2016, 117 :201-208
[24]   Multiresolution anomaly detection method for fractional Gaussian noise [J].
Zhang, Lingsong ;
Zhu, Zhengyuan ;
Marron, J. S. .
JOURNAL OF APPLIED STATISTICS, 2014, 41 (04) :769-784
[25]   Analytical and Computational Problems Related to Fractional Gaussian Noise [J].
Mishura, Yuliya ;
Ralchenko, Kostiantyn ;
Schilling, Rene L. .
FRACTAL AND FRACTIONAL, 2022, 6 (11)
[26]   Extended Fractional Gaussian Noise and Simple ARFIMA Approximations [J].
Man, Kasing .
JOURNAL OF TIME SERIES ECONOMETRICS, 2010, 2 (01)
[27]   Fractional gaussian noise: Spectral density and estimation methods [J].
Shi, Shuping ;
Yu, Jun ;
Zhang, Chen .
JOURNAL OF TIME SERIES ANALYSIS, 2024,
[28]   A filter for a state space model with fractional Gaussian noise [J].
Elliott, Robert J. ;
Deng, Jia .
AUTOMATICA, 2010, 46 (10) :1689-1695
[29]   The Hurst phenomenon and fractional Gaussian noise made easy [J].
Koutsoyiannis, D .
HYDROLOGICAL SCIENCES JOURNAL, 2002, 47 (04) :573-595
[30]   A rigorous derivation of power spectrum of fractional Gaussian noise [J].
Li, Ming ;
Lim, S. C. .
FLUCTUATION AND NOISE LETTERS, 2006, 6 (04) :C33-C36