Interlacing eigenvalues on some operations of graphs

被引:6
|
作者
Wu, Bao-Feng [1 ,2 ]
Shao, Jia-Yu [1 ]
Liu, Yue [1 ]
机构
[1] Tongji Univ, Dept Math, Shanghai 200092, Peoples R China
[2] Shanghai Univ Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China
基金
中国国家自然科学基金;
关键词
Interlacing inequality; Eigenvalue; Spectrum; Graph; Adjacency matrix; Standard Laplacian; Normalized Laplacian; LAPLACIAN SPECTRAL-RADIUS; K-PENDANT VERTICES; NORMALIZED LAPLACIANS; EDGES;
D O I
10.1016/j.laa.2008.10.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we focus on some operations of graphs and give a kind of eigenvalue interlacing in terms of the adjacency matrix, standard Laplacian, and normalized Laplacian. Also, we explore some applications of this interlacing. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1140 / 1150
页数:11
相关论文
共 50 条
  • [1] Deleting vertices and interlacing Laplacian eigenvalues
    Wu, Baofeng
    Shao, Jiayu
    Yuan, Xiying
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2010, 31 (02) : 231 - 236
  • [2] Deleting vertices and interlacing Laplacian eigenvalues
    Baofeng Wu
    Jiayu Shao
    Xiying Yuan
    Chinese Annals of Mathematics, Series B, 2010, 31 : 231 - 236
  • [3] Deleting Vertices and Interlacing Laplacian Eigenvalues
    Baofeng WU Jiayu SHAO Xiying YUAN College of Science
    Department of Mathematics
    Chinese Annals of Mathematics,Series B, 2010, (02) : 231 - 236
  • [4] Eigenvalues, Laplacian Eigenvalues, and Some Hamiltonian Properties of Graphs
    Li, Rao
    UTILITAS MATHEMATICA, 2012, 88 : 247 - 257
  • [5] On interlacing of net-Laplacian and normalized net-Laplacian eigenvalues of signed graphs
    Guragain, Satyam
    Srivastava, Ravi
    LINEAR & MULTILINEAR ALGEBRA, 2024,
  • [6] Some bounds on the largest eigenvalues of graphs
    Li, Shuchao
    Tian, Yi
    APPLIED MATHEMATICS LETTERS, 2012, 25 (03) : 326 - 332
  • [7] Some Inequalities on Vertex Degrees, Eigenvalues, and Laplacian Eigenvalues of Graphs
    Li, Rao
    UTILITAS MATHEMATICA, 2009, 80 : 217 - 224
  • [8] Some properties of generalized distance eigenvalues of graphs
    Yuzheng Ma
    Yanling Shao
    Czechoslovak Mathematical Journal, 2024, 74 : 1 - 15
  • [9] SOME PROPERTIES OF GENERALIZED DISTANCE EIGENVALUES OF GRAPHS
    Ma, Yuzheng
    Shao, Yanling
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2024, 74 (01) : 1 - 15
  • [10] NORMS, KERNELS AND EIGENVALUES OF SOME INFINITE GRAPHS
    Agrawal, Aahan
    Berge, Astrid
    Colbert-Pollack, Seth
    Martinez-Avendano, Ruben A.
    Sliheet, Elyssa
    OPERATORS AND MATRICES, 2020, 14 (01): : 221 - 250