The influence of a line with fast diffusion on Fisher-KPP propagation

被引:75
作者
Berestycki, Henri [1 ]
Roquejoffre, Jean-Michel [2 ]
Rossi, Luca [3 ]
机构
[1] Ecole Hautes Etud Sci Sociales, CAMS, F-75084 Paris, France
[2] Univ Toulouse 3, Inst Math Toulouse, F-31062 Toulouse 4, France
[3] Univ Padua, Dipartimento Matemat, I-35121 Padua, Italy
基金
美国国家科学基金会;
关键词
KPP equations; Reaction-diffusion system; Fast diffusion on a line; Asymptotic speed of propagation; SYSTEMS; WAVES;
D O I
10.1007/s00285-012-0604-z
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose here a new model to describe biological invasions in the plane when a strong diffusion takes place on a line. We establish the main properties of the system, and also derive the asymptotic speed of spreading in the direction of the line. For low diffusion, the line has no effect, whereas, past a threshold, the line enhances global diffusion in the plane and the propagation is directed by diffusion on the line. It is shown here that the global asymptotic speed of spreading in the plane, in the direction of the line, grows as the square root of the diffusion on the line. The model is much relevant to account for the effects of fast diffusion lines such as roads on spreading of invasive species.
引用
收藏
页码:743 / 766
页数:24
相关论文
共 16 条
[1]  
[Anonymous], 1937, B MOSCOW U MATH MECH
[2]   MULTIDIMENSIONAL NON-LINEAR DIFFUSION ARISING IN POPULATION-GENETICS [J].
ARONSON, DG ;
WEINBERGER, HF .
ADVANCES IN MATHEMATICS, 1978, 30 (01) :33-76
[3]   WAVE-FRONT PROPAGATION FOR REACTION-DIFFUSION SYSTEMS OF PDE [J].
BARLES, G ;
EVANS, LC ;
SOUGANDIS, PE .
DUKE MATHEMATICAL JOURNAL, 1990, 61 (03) :835-858
[4]  
Barroux R, 2012, LE MONDE 0718
[5]   Analysis of the periodically fragmented environment model: I - Species persistence [J].
Berestycki, H ;
Hamel, F ;
Roques, L .
JOURNAL OF MATHEMATICAL BIOLOGY, 2005, 51 (01) :75-113
[6]  
Berestycki H, 2012, APPL MATH S IN PRESS
[7]   Generalized transition waves and their properties [J].
Berestycki, Henri ;
Hamel, Francois .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2012, 65 (05) :592-648
[8]  
EVANS LC, 1989, ANNALES DE LINSTITUT HENRI POINCARE, VOL 6 SUPPL, P229
[9]  
Hillen T, 2012, C BANFF RES STAT
[10]  
Hillen T, 2012, TRANSPORT ANISOTROPI