Unconditionally Monotone Schemes for Unsteady Convection-Diffusion Problems

被引:7
|
作者
Afanas'eva, Nadyezhda M. [1 ]
Churbanov, Alexander G. [2 ]
Vabishchevich, Petr N. [2 ]
机构
[1] North Eastern Fed Univ, Yakutsk 677000, Russia
[2] Russian Acad Sci, Nucl Safety Inst, Moscow 115191, Russia
关键词
Convection-Diffusion Problems; Finite Difference Schemes; Logarithmic Norm; Monotone Schemes; Splitting Schemes; IMPLICIT EXPLICIT METHODS;
D O I
10.1515/cmam-2013-0002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with constructing monotone schemes of the second-order accuracy in space for transient convection-diffusion problems. They are based on a reformulation of the convective and diffusive transport terms using the convective terms in the divergent and nondivergent forms. The stability of the difference schemes is established in the uniform and L-1 norm. For 2D problems, unconditionally monotone schemes of splitting with respect to spatial variables are developed. Unconditionally stable schemes for problems of convection-diffusion-reaction are proposed, too.
引用
收藏
页码:185 / 205
页数:21
相关论文
共 50 条
  • [1] Unconditionally Stable Schemes for Convection-Diffusion Problems
    Afanas'eva, N. M.
    Vabishchevich, P. N.
    Vasil'eva, M. V.
    RUSSIAN MATHEMATICS, 2013, 57 (03) : 1 - 11
  • [2] MONOTONE-DIFFERENCE SCHEMES FOR CONVECTION-DIFFUSION PROBLEMS
    VABISHCHEVICH, PN
    DIFFERENTIAL EQUATIONS, 1994, 30 (03) : 466 - 474
  • [3] Monotone Schemes for Convection-Diffusion Problems with Convective Transport in Different Forms
    Vabishchevich, P. N.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2021, 61 (01) : 90 - 102
  • [4] Unconditionally Stable Schemes for Non-stationary Convection-Diffusion Equations
    Afanasyeva, Nadezhda
    Vabishchevich, Petr N.
    Vasilyeva, Maria
    NUMERICAL ANALYSIS AND ITS APPLICATIONS, NAA 2012, 2013, 8236 : 151 - 157
  • [5] Modified streamline diffusion schemes for convection-diffusion problems
    Shih, YT
    Elman, HC
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1999, 174 (1-2) : 137 - 151
  • [6] Degenerate convection-diffusion equations and implicit monotone difference schemes
    Evje, S
    Karlsen, KH
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, VOL 1, 1999, 129 : 285 - 294
  • [7] HDG schemes for stationary convection-diffusion problems
    Dautov, R. Z.
    Fedotov, E. M.
    11TH INTERNATIONAL CONFERENCE ON MESH METHODS FOR BOUNDRY-VALUE PROBLEMS AND APPLICATIONS, 2016, 158
  • [8] Modified exponential schemes for convection-diffusion problems
    Luo, C.
    Dlugogorski, B. Z.
    Moghtaderi, B.
    Kennedy, E. M.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2008, 13 (02) : 369 - 379
  • [9] Alternating triangular schemes for convection-diffusion problems
    Vabishchevich, P. N.
    Zakharov, P. E.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2016, 56 (04) : 576 - 592
  • [10] Finite Difference Schemes for Convection-Diffusion Problems
    Linss, Torsten
    LAYER-ADAPTED MESHES FOR REACTION-CONVECTION-DIFFUSION PROBLEMS, 2010, 1985 : 77 - 149