Automatic arterial input function selection in CT and MR perfusion datasets using deep convolutional neural networks

被引:21
作者
Winder, Anthony [1 ,2 ]
d'Esterre, Christopher D. [2 ,3 ]
Menon, Bijoy K. [1 ,2 ,3 ]
Fiehler, Jens [4 ]
Forkert, Nils D. [1 ,2 ,3 ,5 ]
机构
[1] Univ Calgary, Dept Radiol, Calgary, AB, Canada
[2] Univ Calgary, Hotchkiss Brain Inst, Calgary, AB, Canada
[3] Univ Calgary, Dept Clin Neurosci, Calgary, AB, Canada
[4] Univ Med Ctr Hamburg Eppendorf, Dept Diagnost & Intervent Neuroradiol, Hamburg, Germany
[5] Univ Calgary, Alberta Childrens Hosp Res Inst, Calgary, AB, Canada
关键词
ischemic stroke; machine learning; perfusion imaging; ACUTE ISCHEMIC-STROKE; CEREBRAL-BLOOD-FLOW; PENUMBRAL FLOW; QUANTIFICATION; VALIDATION; LOCATION; MODEL; TOOL;
D O I
10.1002/mp.14351
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose The computation of perfusion parameter images requires knowledge of the arterial blood flow in the form of an arterial input function (AIF). This work proposes a novel method to automatically identify AIFs in computed tomography perfusion (CTP) and dynamic susceptibility contrast perfusion-weighted MRI (PWI) datasets using a deep convolutional neural network (CNN). Methods One-hundred CTP and 100 PWI datasets of acute ischemic stroke patients were available for model development and evaluation. For each modality, 50 datasets were used for CNN training and 20 for validation using manually selected AIFs and non-arterial tissue concentration time curves. Model evaluation was performed using the remaining 30 independent validation datasets from each modality with manual AIF selections provided by two experts as ground truth. Additionally, AIFs were also extracted using an established automatic shape-based algorithm for comparison purposes. The extracted AIFs were compared using normalized cross-correlation and shape features as well as using the Dice similarity metric and volume of the corresponding hypoperfusion (Tmax > 6 s) lesions. Results The cross-correlation values comparing the manual AIFs and those extracted by the proposed CNN method were significantly greater than those comparing the manual AIFs to the shape-based comparison method. Likewise, hypoperfusion lesions generated using the manually selected AIFs and CNN-based AIFs showed higher Dice values compared to hypoperfusion lesions generated using the comparison AIF extraction method. Shape features for AIFs generated by the proposed method did not differ significantly from the manual AIFs, with the exception that the CNN-derived AIFs for the PWI datasets showed marginally greater peak heights. Conclusion Deep convolutional neural network models are viable for the automatic extraction of the AIF from CTP and PWI datasets.
引用
收藏
页码:4199 / 4211
页数:13
相关论文
共 35 条
  • [1] Thrombectomy for Stroke at 6 to 16 Hours with Selection by Perfusion Imaging
    Albers, G. W.
    Marks, M. P.
    Kemp, S.
    Christensen, S.
    Tsai, J. P.
    Ortega-Gutierrez, S.
    McTaggart, R. A.
    Torbey, M. T.
    Kim-Tenser, M.
    Leslie-Mazwi, T.
    Sarraj, A.
    Kasner, S. E.
    Ansari, S. A.
    Yeatts, S. D.
    Hamilton, S.
    Mlynash, M.
    Heit, J. J.
    Zaharchuk, G.
    Kim, S.
    Carrozzella, J.
    Palesch, Y. Y.
    Demchuk, A. M.
    Bammer, R.
    Lavori, P. W.
    Broderick, J. P.
    Lansberg, M. G.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2018, 378 (08) : 708 - 718
  • [2] Intravenous Contrast Medium Administration and Scan Timing at CT: Considerations and Approaches
    Bae, Kyongtae T.
    [J]. RADIOLOGY, 2010, 256 (01) : 32 - 61
  • [3] Effect of the arterial input function on the measured perfusion values and infarct volumetric in acute cerebral ischemia evaluated by perfusion computed tomography
    Bisdas, Sotirios
    Konstantinou, George N.
    Gurung, Jessen
    Lehnert, Thomas
    Donnerstag, Frank
    Becker, Hartmut
    Vogl, Thomas J.
    Koh, Tong San
    [J]. INVESTIGATIVE RADIOLOGY, 2007, 42 (03) : 147 - 156
  • [4] Optimal location for arterial input function measurements near the middle cerebral artery in first-pass perfusion MRI
    Bleeker, Egbert J. W.
    van Buchem, Mark A.
    van Osch, Matthias J. P.
    [J]. JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2009, 29 (04) : 840 - 852
  • [5] Canadian Stroke Best Practice Recommendations for Acute Stroke Management: Prehospital, Emergency Department, and Acute Inpatient Stroke Care, 6th Edition, Update 2018
    Boulanger, J. M.
    Lindsay, M. P.
    Gubitz, G.
    Smith, E. E.
    Stotts, G.
    Foley, N.
    Bhogal, S.
    Boyle, K.
    Braun, L.
    Goddard, T.
    Heran, M. K. S.
    Kanya-Forster, N.
    Lang, E.
    Lavoie, P.
    McClelland, M.
    O'Kelly, C.
    Pageau, P.
    Pettersen, J.
    Purvis, H.
    Shamy, M.
    Tampieri, D.
    vanAdel, B.
    Verbeek, R.
    Blacquiere, D.
    Casaubon, L.
    Ferguson, D.
    Hegedus, Y.
    Jacquin, G. J.
    Kelly, M.
    Kamal, N.
    Linkewich, B.
    Lum, C.
    Mann, B.
    Milot, G.
    Newcommon, N.
    Poirier, P.
    Simpkin, W.
    Snieder, E.
    Trivedi, A.
    Whelan, R.
    Eustace, M.
    Smitko, E.
    Butcher, K.
    [J]. INTERNATIONAL JOURNAL OF STROKE, 2018, 13 (09) : 949 - 984
  • [6] Influence of Stroke Infarct Location on Functional Outcome Measured by the Modified Rankin Scale
    Cheng, Bastian
    Forkert, Nils Daniel
    Zavaglia, Melissa
    Hilgetag, Claus C.
    Golsari, Amir
    Siemonsen, Susanne
    Fiehler, Jens
    Pedraza, Salvador
    Puig, Josep
    Cho, Tae-Hee
    Alawneh, Josef
    Baron, Jean-Claude
    Ostergaard, Leif
    Gerloff, Christian
    Thomalla, Goetz
    [J]. STROKE, 2014, 45 (06) : 1695 - +
  • [7] Reliable Perfusion Maps in Stroke MRI Using Arterial Input Functions Derived From Distal Middle Cerebral Artery Branches
    Ebinger, Martin
    Brunecker, Peter
    Jungehuelsing, Gerhard J.
    Malzahn, Uwe
    Kunze, Claudia
    Endres, Matthias
    Fiebach, Jochen B.
    [J]. STROKE, 2010, 41 (01) : 95 - 101
  • [8] Arterial Input Function Placement for Accurate CT Perfusion Map Construction in Acute Stroke
    Ferreira, Rafael M.
    Lev, Michael H.
    Goldmakher, Gregory V.
    Kamalian, Shahmir
    Schaefer, Pamela W.
    Furie, Karen L.
    Gonzalez, R. Gilberto
    Sanelli, Pina C.
    [J]. AMERICAN JOURNAL OF ROENTGENOLOGY, 2010, 194 (05) : 1330 - 1336
  • [9] ANTONIA Perfusion and Stroke A Software Tool for the Multi-purpose Analysis of MR Perfusion-weighted Datasets and Quantitative Ischemic Stroke Assessment
    Forkert, N. D.
    Cheng, B.
    Kemmling, A.
    Thomalla, G.
    Fiehler, J.
    [J]. METHODS OF INFORMATION IN MEDICINE, 2014, 53 (06) : 469 - 481
  • [10] Comparison of 10 TTP and Tmax Estimation Techniques for MR Perfusion-Diffusion Mismatch Quantification in Acute Stroke
    Forkert, N. D.
    Kaesemann, P.
    Treszl, A.
    Siemonsen, S.
    Cheng, B.
    Handels, H.
    Fiehler, J.
    Thomalla, G.
    [J]. AMERICAN JOURNAL OF NEURORADIOLOGY, 2013, 34 (09) : 1697 - 1703