A Diophantine problem with a prime and three squares of primes

被引:35
作者
Languasco, Alessandro [1 ]
Zaccagnini, Alessandro [2 ]
机构
[1] Univ Padua, Dipartimento Matemat, I-35121 Padua, Italy
[2] Univ Parma, Dipartimento Matemat, I-43124 Parma, Italy
关键词
Goldbach-type theorems; Hardy-Littlewood method; Diophantine inequalities; S POWERS; APPROXIMATION; NUMBERS;
D O I
10.1016/j.jnt.2012.06.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that if lambda(1), lambda(2), lambda(3) and lambda(4) are non-zero real numbers not all of the same sign, lambda(1)/lambda(2) is irrational, and pi is any real number then, for any epsilon > 0, the inequality vertical bar lambda(1)p(1) + lambda(2)p(2)(2) + lambda(3)p(3)(2) + lambda(4)p(4)(2) + pi vertical bar <= (max(j) p(j))(-1/18+epsilon) has infinitely many solutions in prime variables p(1), ..., p(4). (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:3016 / 3028
页数:13
相关论文
共 12 条
[1]  
GHOSH A, 1981, P LOND MATH SOC, V42, P252
[2]   On a diophantine problem with one prime, two squares of primes and s powers of two [J].
Languasco, Alessandro ;
Settimi, Valentina .
ACTA ARITHMETICA, 2012, 154 (04) :385-412
[3]   On a Diophantine problem with two primes and s powers of two [J].
Languasco, Alessandro ;
Zaccagnini, Alessandro .
ACTA ARITHMETICA, 2010, 145 (02) :193-208
[4]   Diophantine approximation with one prime and three squares of primes [J].
Li, Weiping ;
Wang, Tianze .
RAMANUJAN JOURNAL, 2011, 25 (03) :343-357
[5]   Representation of odd integers as the sum of one prime, two squares of primes and powers of 2 [J].
Liu, T .
ACTA ARITHMETICA, 2004, 115 (02) :97-118
[6]  
Parsell S. T., 2003, NEW YORK J MATH, V9, P363
[7]   On Linnik's approximation to Goldbach's problem, I [J].
Pintz, J ;
Ruzsa, IZ .
ACTA ARITHMETICA, 2003, 109 (02) :169-194
[8]  
RIEGER GJ, 1968, J REINE ANGEW MATH, V231, P89
[9]  
Saffari B., 1977, ANN I FOURIER GRENOB, V27, P1, DOI 10.5802/aif.649
[10]  
Vaughan R.C., 1997, THE HARDY LITTLEWOOD