Variable selection for longitudinal varying coefficient errors-in-variables models

被引:6
作者
Zhao, Mingtao [1 ,2 ]
Gao, Yuzhao [3 ]
Cui, Yuehua [2 ]
机构
[1] Anhui Univ Finance & Econ, Sch Stat & Appl Math, Bengbu, Anhui, Peoples R China
[2] Michigan State Univ, Dept Stat & Probabil, E Lansing, MI 48824 USA
[3] Shanxi Med Univ, Sch Publ Hlth, Taiyuan, Shanxi, Peoples R China
关键词
Longitudinal data; variable selection; varying coefficient errors-in-variables models; penalized quadratic inference function; QUADRATIC INFERENCE FUNCTIONS; EMPIRICAL LIKELIHOOD; LINEAR-MODELS;
D O I
10.1080/03610926.2020.1801738
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we investigate the variable selection for varying coefficient errors-in-variables (EV) models with longitudinal data when some covariates are measured with additive errors. A variable selection method based on bias-corrected penalized quadratic inference function (pQIF) is proposed by combining the basis function approximation to coefficient functions and bias-corrected quadratic inference function (QIF) with shrinkage estimations. The proposed method can handle the measurement errors of covariates and within-subject correlation, estimate and select non-zero nonparametric coefficient functions. With appropriate selection of the tuning parameters, we establish the consistency of the variable selection method and the sparsity properties of the regularized estimators. The finite sample performance of the proposed method is assessed by simulation studies. The utility of the method is further demonstrated via a real data analysis.
引用
收藏
页码:3713 / 3738
页数:26
相关论文
共 34 条
[11]   LONGITUDINAL DATA-ANALYSIS USING GENERALIZED LINEAR-MODELS [J].
LIANG, KY ;
ZEGER, SL .
BIOMETRIKA, 1986, 73 (01) :13-22
[12]   Semiparametric and nonparametric regression analysis of longitudinal data [J].
Lin, DY ;
Ying, Z .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (453) :103-113
[13]   Nonparametric function estimation for clustered data when the predictor is measured without/with error [J].
Lin, XH ;
Carroll, RJ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2000, 95 (450) :520-534
[14]   Dynamic pricing and ordering decision for the perishable food of the supermarket using RFID technology [J].
Liu, Xiaofeng ;
Tang, Ou ;
Huang, Pei .
ASIA PACIFIC JOURNAL OF MARKETING AND LOGISTICS, 2008, 20 (01) :7-22
[15]   Consistent model check of errors-in-variables varying-coefficient model with auxiliary variable [J].
Liu, Zhifan ;
Liu, Chunling ;
Sun, Zhihua .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2019, 198 :13-28
[16]   Varying Coefficient Regression Models: A Review and New Developments [J].
Park, Byeong U. ;
Mammen, Enno ;
Lee, Young K. ;
Lee, Eun Ryung .
INTERNATIONAL STATISTICAL REVIEW, 2015, 83 (01) :36-64
[17]   Quadratic inference functions for varying-coefficient models with longitudinal data [J].
Qu, A ;
Li, RZ .
BIOMETRICS, 2006, 62 (02) :379-391
[18]   Improving generalised estimating equations using quadratic inference functions [J].
Qu, A ;
Lindsay, BG ;
Li, B .
BIOMETRIKA, 2000, 87 (04) :823-836
[19]  
Schumaker L. L., 2007, SPLINE FUNCTIONS BAS
[20]   Generalized varying coefficient models for longitudinal data [J].
Senturk, Damla ;
Mueller, Hans-Georg .
BIOMETRIKA, 2008, 95 (03) :653-666