ON UNIFORM APPROXIMATION OF HARMONIC FUNCTIONS

被引:2
作者
Mazalov, M. Ya. [1 ]
机构
[1] AM Vasilevskii Mil Acad Air Def, Mil Forces RF, Smolensk 214027, Russia
关键词
Uniform approximation; harmonic functions; capacities; singular integrals; Carleson measures; APPROXIMABILITY;
D O I
10.1090/S1061-0022-2012-01215-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper is devoted to uniform approximation by harmonic functions on compact sets. The result is an approximation theorem for an individual function under the condition that, on the complement to the compact set, the harmonic capacity is "homogeneous" in a sense. The proof involves a refinement of Vitushkin's localization method.
引用
收藏
页码:731 / 759
页数:29
相关论文
共 22 条
[1]  
Carleson L., 1967, VAN NOSTRAND MATH D, V13D
[2]  
DAVID G, 1991, LECT NOTES MATH, V1465, P1
[3]  
Deny J, 1949, ANN I FOURIER GRENOB, V1, P103, DOI 10.5802/aif.9
[4]  
HARVEY R, 1972, T AM MATH SOC, V169, P183
[5]   REMOVABLE SINGULARITIES OF SOLUTIONS OF LINEAR PARTIAL DIFFERENTIAL EQUATIONS [J].
HARVEY, R ;
POLKING, J .
ACTA MATHEMATICA UPPSALA, 1970, 125 (1-2) :39-&
[6]  
KELDYSH MV, 1941, USP MAT NAUK, V8, P171
[7]  
Landkof N., 1972, Foundations of Modern Potential Theory. Grundlehren der mathematischen Wissenschaften
[8]   LIPSCHITZ APPROXIMATION BY HARMONIC-FUNCTIONS AND SOME APPLICATIONS TO SPECTRAL-SYNTHESIS [J].
MATEU, J ;
OROBITG, J .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1990, 39 (03) :703-736
[9]   Criterion for uniform approximability on arbitrary compact sets for solutions of elliptic equations [J].
Mazalov, M. Ya. .
SBORNIK MATHEMATICS, 2008, 199 (1-2) :13-44
[10]   Uniform approximations by bianalytic functions on arbitrary compact subsets of C [J].
Mazalov, MY .
SBORNIK MATHEMATICS, 2004, 195 (5-6) :687-709