Late Hesperian aqueous alteration at Majuro crater, Mars

被引:48
|
作者
Mangold, N. [1 ]
Carter, J. [2 ,3 ]
Poulet, F. [2 ]
Dehouck, E. [1 ]
Ansan, V. [1 ]
Loizeau, D. [2 ,4 ]
机构
[1] Univ Nantes, CNRS, Lab Planetol & Geodynam Nantes, Nantes, France
[2] Univ Paris 11, CNRS, Inst Astrophys Spatiale, F-91405 Orsay, France
[3] European So Observ, Santiago 19, Chile
[4] ESA ESTEC, Keplerlaan, Netherlands
关键词
Mars; Gale; Impact crater; Fluvial landforms; Alteration; Phyllosilicates; Alluvial fan; DEBRIS APRONS; IMPACT CRATER; HELLAS REGION; SURFACE; HISTORY; WATER; PRECIPITATION; EVOLUTION; MINERALS; DEPOSITS;
D O I
10.1016/j.pss.2012.03.014
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Impact craters cover a large portion of the surface of Mars and could constitute a significant exobiology research target as their formation provided heat sources for aqueous processes. To date, only rare examples of hydrothermal alteration in craters have been reported on Mars while many studies have focused on modeling their effect. Using data from the Mars Reconnaissance Orbiter and Mars Express probes, we report the presence of hydrated minerals, mainly Fe/Mg phyllosilicates, with vermiculite as best-fit, that are found in an alluvial fan. This fan is located inside a crater located in NE Hellas region and dated to the Late Hesperian by crater counts and crosscutting relationships. The stratigraphic position of the hydrated minerals and presence of small domes interpreted as hydrothermal vents indicate that the alteration occurred in the lower level of the alluvial fan and was triggered by bottom-up alteration. These observations are best explained by a combination of snow deposition and subsequent melting eroding crater rims and forming the fan, with impact warming, which triggered the alteration at the base of the fan. This example shows that phyllosilicates are able to form late in the Martian history, especially in local niches of strong exobiological interest. It also suggests that a similar process was possible in alluvial fans of other large impact craters including those at Gale crater. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:18 / 30
页数:13
相关论文
共 50 条
  • [31] Diagenetic silica enrichment and late-stage groundwater activity in Gale crater, Mars
    Frydenvang, J.
    Gasda, P. J.
    Hurowitz, J. A.
    Grotzinger, J. P.
    Wiens, R. C.
    Newsom, H. E.
    Edgett, K. S.
    Watkins, J.
    Bridges, J. C.
    Maurice, S.
    Fisk, M. R.
    Johnson, J. R.
    Rapin, W.
    Stein, N. T.
    Clegg, S. M.
    Schwenzer, S. P.
    Bedford, C. C.
    Edwards, P.
    Mangold, N.
    Cousin, A.
    Anderson, R. B.
    Payre, V.
    Vaniman, D.
    Blake, D. F.
    Lanza, N. L.
    Gupta, S.
    Van Beek, J.
    Sautter, V.
    Meslin, P. -Y.
    Rice, M.
    Milliken, R.
    Gellert, R.
    Thompson, L.
    Clark, B. C.
    Sumner, D. Y.
    Fraeman, A. A.
    Kinch, K. M.
    Madsen, M. B.
    Mitrofanov, I. G.
    Jun, I.
    Calef, F.
    Vasavada, A. R.
    GEOPHYSICAL RESEARCH LETTERS, 2017, 44 (10) : 4716 - 4724
  • [32] Erosional modification and gully formation at Meteor Crater, Arizona: Insights into crater degradation processes on Mars
    Kumar, P. Senthil
    Head, James W.
    Kring, David A.
    ICARUS, 2010, 208 (02) : 608 - 620
  • [33] Slope activity in Gale crater, Mars
    Dundas, Colin M.
    McEwen, Alfred S.
    ICARUS, 2015, 254 : 213 - 218
  • [34] Evidence for Late Alluvial Activity in Gale Crater, Mars
    Grant, John A.
    Wilson, Sharon A.
    GEOPHYSICAL RESEARCH LETTERS, 2019, 46 (13) : 7287 - 7294
  • [35] Constraints on the origin and evolution of the layered mound in Gale Crater, Mars using Mars Reconnaissance Orbiter data
    Thomson, B. J.
    Bridges, N. T.
    Milliken, R.
    Baldridge, A.
    Hook, S. J.
    Crowley, J. K.
    Marion, G. M.
    de Souza Filho, C. R.
    Brown, A. J.
    Weitz, C. M.
    ICARUS, 2011, 214 (02) : 413 - 432
  • [36] Aqueous alteration of pyroxene in sulfate, chloride, and perchlorate brines: Implications for post-Noachian aqueous alteration on Mars
    Phillips-Lander, Charity M.
    Madden, Andrew S. Elwood
    Hausrath, Elisabeth M.
    Madden, Megan E. Elwood
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2019, 257 : 336 - 353
  • [37] Reconstructing the past climate at Gale crater, Mars, from hydrological modeling of late-stage lakes
    Horvath, David G.
    Andrews-Hanna, Jeffrey C.
    GEOPHYSICAL RESEARCH LETTERS, 2017, 44 (16) : 8196 - 8204
  • [38] A cold hydrological system in Gale crater, Mars
    Fairen, Alberto G.
    Stokes, Chris R.
    Davies, Neil S.
    Schulze-Makuch, Dirk
    Rodriguez, J. Alexis P.
    Davila, Alfonso F.
    Uceda, Esther R.
    Dohm, James M.
    Baker, Victor R.
    Clifford, Stephen M.
    Mckay, Christopher P.
    Squyres, Steven W.
    PLANETARY AND SPACE SCIENCE, 2014, 93-94 : 101 - 118
  • [39] The timing of alluvial activity in Gale crater, Mars
    Grant, John A.
    Wilson, Sharon A.
    Mangold, Nicolas
    Calef, Fred, III
    Grotzinger, John P.
    GEOPHYSICAL RESEARCH LETTERS, 2014, 41 (04) : 1142 - 1148
  • [40] Sedimentary textures formed by aqueous processes, Erebus crater, Meridiani Planum, Mars
    Grotzinger, J.
    Bell, J., III
    Herkenhoff, K.
    Johnson, J.
    Knoll, A.
    McCartney, E.
    McLennan, S.
    Metz, J.
    Moore, J.
    Squyres, S.
    Sullivan, R.
    Ahronson, O.
    ArvIdson, R.
    Joliff, B.
    Golombek, M.
    Lewis, K.
    Parker, T.
    Soclerblom, J.
    GEOLOGY, 2006, 34 (12) : 1085 - 1088