Rapid prediction method for thermal runaway propagation in battery pack based on lumped thermal resistance network and electric circuit analogy

被引:112
作者
Jiang, Z. Y. [1 ]
Qu, Z. G. [1 ]
Zhang, J. F. [1 ]
Rao, Z. H. [2 ]
机构
[1] Xi An Jiao Tong Univ, MOE Key Lab Thermofluid Sci & Engn, Sch Energy & Power Engn, Xian 710049, Shaanxi, Peoples R China
[2] China Univ Min & Technol, Sch Elect & Power Engn, Xuzhou 221116, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion battery; Thermal runaway propagation; Thermal resistance network; Resistance-capacitance model; LITHIUM-ION BATTERY; MANAGEMENT-SYSTEM; MODEL; CELLS; MODULE;
D O I
10.1016/j.apenergy.2020.115007
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
High-power lithium-ion batteries (LIBs) suffer from thermal runaway (TR) under unusual forces and misuse. Consequent TR propagation can cause battery pack breakdown and even dangerous fires or explosions. In this study, a four-step TR propagation prediction method is proposed for large-scale battery packs with series and parallel connection. To investigate the TR propagation behavior in battery packs, a lumped thermal resistance network was constructed based on the heat transfer characteristics of LIB packs. The energy balance equation for each cell and heat exchange between cells were solved via electrical circuit analogy. TR propagation features are discussed with different TR trigger locations, and the TR prevention effect of phase change materials (PCMs) is evaluated. The proposed prediction method exhibits high computational efficiency and adequate accuracy in resolving TR propagation. The prediction of battery core temperature and the experimental results are good in agreement. The TR propagation includes three stages: initial stage, rapid expanding stage and burst stage. The TR propagates preferentially along the thermal path with lower thermal resistance. When a PCM is applied to prevent TR, the critical behavior of TR propagation prevention is discovered. If the trigger cell of TR is prevented with the PCM, TR propagation in the entire pack can be avoided. The proposed method fulfils the fast prediction of TR propagation, which can provide insights into the on-board thermal safety design of electric vehicles.
引用
收藏
页数:16
相关论文
共 23 条
[1]   Numerical analysis of heat propagation in a battery pack using a novel technology for triggering thermal runaway [J].
Coman, Paul T. ;
Darcy, Eric C. ;
Veje, Christian T. ;
White, Ralph E. .
APPLIED ENERGY, 2017, 203 :189-200
[2]   A lumped model of venting during thermal runaway in a cylindrical Lithium Cobalt Oxide lithium-ion cell [J].
Coman, Paul T. ;
Rayman, Sean ;
White, Ralph E. .
JOURNAL OF POWER SOURCES, 2016, 307 :56-62
[3]   Thermal runaway mechanism of lithium ion battery for electric vehicles: A review [J].
Feng, Xuning ;
Ouyang, Minggao ;
Liu, Xiang ;
Lu, Languang ;
Xia, Yong ;
He, Xiangming .
ENERGY STORAGE MATERIALS, 2018, 10 :246-267
[4]   A 3D thermal runaway propagation model for a large format lithium ion battery module [J].
Feng, Xuning ;
Lu, Languang ;
Ouyang, Minggao ;
Li, Jiangqiu ;
He, Xiangming .
ENERGY, 2016, 115 :194-208
[5]   Thermal runaway propagation model for designing a safer battery pack with 25 Ah LiNixCoyMnzO2 large format lithium ion battery [J].
Feng, Xuning ;
He, Xiangming ;
Ouyang, Minggao ;
Lu, Languang ;
Wu, Peng ;
Kulp, Christian ;
Prasser, Stefan .
APPLIED ENERGY, 2015, 154 :74-91
[6]   Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry [J].
Feng, Xuning ;
Fang, Mou ;
He, Xiangming ;
Ouyang, Minggao ;
Lu, Languang ;
Wang, Hao ;
Zhang, Mingxuan .
JOURNAL OF POWER SOURCES, 2014, 255 :294-301
[7]   Characterising thermal runaway within lithium-ion cells by inducing and monitoring internal short circuits [J].
Finegan, Donal P. ;
Darcy, Eric ;
Keyser, Matthew ;
Tjaden, Bernhard ;
Heenan, Thomas M. M. ;
Jervis, Rhodri ;
Bailey, Josh J. ;
Malik, Romeo ;
Vo, Nghia T. ;
Magdysyuk, Oxana V. ;
Atwood, Robert ;
Drakopoulos, Michael ;
DiMichiel, Marco ;
Rack, Alexander ;
Hinds, Gareth ;
Brett, Dan J. L. ;
Shearing, Paul R. .
ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (06) :1377-1388
[8]   An experimental and analytical study of thermal runaway propagation in a large format lithium ion battery module with NCM pouch-cells in parallel [J].
Gao, Shang ;
Feng, Xuning ;
Lu, Languang ;
Kamyab, Niloofar ;
Du, Jiuyu ;
Coman, Paul ;
White, Ralph E. ;
Ouyang, Minggao .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 135 :93-103
[9]   Thermal model of cylindrical and prismatic lithium-ion cells [J].
Hatchard, TD ;
MacNeil, DD ;
Basu, A ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (07) :A755-A761
[10]   Probing the cooling effectiveness of phase change materials on lithium-ion battery thermal response under overcharge condition [J].
Huang, Peifeng ;
Verma, Ankit ;
Robles, Daniel J. ;
Wang, Qingsong ;
Mukherjee, Partha ;
Sun, Jinhua .
APPLIED THERMAL ENGINEERING, 2018, 132 :521-530