Experimental and numerical investigation of conventional and stiffened re-entrant cell structures under compression

被引:7
|
作者
Ozturk, Mitat [1 ]
Baran, Tarik [1 ]
Tatlier, Mehmet Seha [2 ]
机构
[1] Osmaniye Korkut Ata Univ, Dept Civil Engn, TR-80000 Osmaniye, Turkey
[2] Osmaniye Korkut Ata Univ, Dept Mech Engn, TR-80000 Osmaniye, Turkey
关键词
Re-entrant cellular structures; Auxetic; Energy absorption; Negative Poisson's ratio; Nonlinear crushing response; NEGATIVE POISSONS RATIO; COMPLIANT MICROMECHANISMS; SANDWICH PANELS; FOAM MATERIALS; HONEYCOMB; DESIGN; MECHANICS; BEHAVIOR; HOMOGENIZATION; FABRICATION;
D O I
10.1007/s40430-022-03889-x
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A classical re-entrant cell is a type of metamaterial known as auxetic. While the most unusual and advantageous feature of auxetic materials is that they have negative Poisson's ratios, having low stiffness-as seen in the classical re-entrant cell-may be a drawback. A study was conducted to increase the stiffness of the classical re-entrant cell while maintaining the negative Poisson's ratio. This paper reports the nonlinear experimental and numerical works of three re-entrant cells one of which is a well-known classical re-entrant cell, and the latter two were modified based on classical re-entrant cell. In the work, the cellular structure specimens were fabricated with a 3D printer using polylactic acid (PLA) material and crushing tests were conducted until the full crush phase. The specimens were also modelled using solid finite elements considering wall-to-wall frictional contacts and analysed. The linear mechanical properties of the cells were also determined by employing analytical expressions that were developed for modified cells. Thus, both the theoretical and the nonlinear numerical results were validated using experiments. In conclusion, the modified cells exhibited an increase in stiffness, energy absorption capacity, and plasticity, compared to the classical re-entrant cell. All benefits and drawbacks of the modifications to achieve stiff cells are reported in this paper.
引用
收藏
页数:22
相关论文
共 50 条
  • [11] A numerical study on energy absorption of re-entrant honeycomb structures with variable alignment
    Tatlier, Mehmet Seha
    INTERNATIONAL JOURNAL OF CRASHWORTHINESS, 2021, 26 (03) : 237 - 245
  • [12] Dynamic crushing response of novel re-entrant circular auxetic honeycombs: Numerical simulation and theoretical analysis
    Qi, Chang
    Jiang, Feng
    Yang, Shu
    Remennikov, Alex
    Chen, Shang
    Ding, Chen
    AEROSPACE SCIENCE AND TECHNOLOGY, 2022, 124
  • [13] Experimental and simulation study of fiber-reinforced and foam-filled anti-tetrachiral and re-entrant structures
    Shi, Nannan
    Zhang, Weichen
    Liu, Han
    Zhao, Liutao
    MATERIALS TODAY COMMUNICATIONS, 2024, 41
  • [14] Mechanical properties of re-entrant anti-chiral auxetic metamaterial under the in-plane compression
    Li, Kunyuan
    Zhang, Yong
    Hou, Yubo
    Su, Liang
    Zeng, Guoyao
    Xu, Xiang
    THIN-WALLED STRUCTURES, 2023, 184
  • [15] Dynamic Compressive and Flexural Behaviour of Re-Entrant Auxetics: A Numerical Study
    Gao, Dianwei
    Zhang, Jianhua
    Zhang, Chunwei
    You, Yun
    MATERIALS, 2023, 16 (15)
  • [16] Experimental and numerical research on foam filled re-entrant cellular structure with negative Poisson's ratio
    Yu, Rong
    Luo, Wei
    Yuan, Hua
    Liu, Jingxi
    He, Wentao
    Yu, Zixian
    THIN-WALLED STRUCTURES, 2020, 153
  • [17] Additive manufactured 3D re-entrant auxetic structures for enhanced impact resistance
    Nam, Ryan
    Nam, Daniel
    Naguib, Hani E.
    SMART MATERIALS AND STRUCTURES, 2024, 33 (12)
  • [18] Energy Absorption Characteristics of Fused Deposition Modeling 3D Printed Auxetic Re-entrant Structures: A Review
    Choudhry, Niranjan Kumar
    Panda, Biranchi
    Dixit, Uday Shanker
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2023, 32 (20) : 8981 - 8999
  • [19] Tensile Mechanical Behaviors of Re-entrant and Kelvin Cell Lattice Structures
    Hu, Qifang
    Lu, Guoxing
    Tse, Kwong Ming
    JOM, 2024, 76 (01) : 387 - 396
  • [20] Mechanical properties of 3D re-entrant auxetic cellular structures
    Wang, Xin-Tao
    Wang, Bing
    Li, Xiao-Wen
    Ma, Li
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2017, 131 : 396 - 407