Experimental and numerical investigation of conventional and stiffened re-entrant cell structures under compression

被引:9
作者
Ozturk, Mitat [1 ]
Baran, Tarik [1 ]
Tatlier, Mehmet Seha [2 ]
机构
[1] Osmaniye Korkut Ata Univ, Dept Civil Engn, TR-80000 Osmaniye, Turkey
[2] Osmaniye Korkut Ata Univ, Dept Mech Engn, TR-80000 Osmaniye, Turkey
关键词
Re-entrant cellular structures; Auxetic; Energy absorption; Negative Poisson's ratio; Nonlinear crushing response; NEGATIVE POISSONS RATIO; COMPLIANT MICROMECHANISMS; SANDWICH PANELS; FOAM MATERIALS; HONEYCOMB; DESIGN; MECHANICS; BEHAVIOR; HOMOGENIZATION; FABRICATION;
D O I
10.1007/s40430-022-03889-x
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A classical re-entrant cell is a type of metamaterial known as auxetic. While the most unusual and advantageous feature of auxetic materials is that they have negative Poisson's ratios, having low stiffness-as seen in the classical re-entrant cell-may be a drawback. A study was conducted to increase the stiffness of the classical re-entrant cell while maintaining the negative Poisson's ratio. This paper reports the nonlinear experimental and numerical works of three re-entrant cells one of which is a well-known classical re-entrant cell, and the latter two were modified based on classical re-entrant cell. In the work, the cellular structure specimens were fabricated with a 3D printer using polylactic acid (PLA) material and crushing tests were conducted until the full crush phase. The specimens were also modelled using solid finite elements considering wall-to-wall frictional contacts and analysed. The linear mechanical properties of the cells were also determined by employing analytical expressions that were developed for modified cells. Thus, both the theoretical and the nonlinear numerical results were validated using experiments. In conclusion, the modified cells exhibited an increase in stiffness, energy absorption capacity, and plasticity, compared to the classical re-entrant cell. All benefits and drawbacks of the modifications to achieve stiff cells are reported in this paper.
引用
收藏
页数:22
相关论文
共 89 条
[11]   Design and modeling of a combined embedded enhanced honeycomb with tunable mechanical properties [J].
Chen, Yu ;
Fu, Ming-Hui .
APPLIED COMPOSITE MATERIALS, 2018, 25 (05) :1041-1055
[12]   A novel three-dimensional auxetic lattice meta-material with enhanced stiffness [J].
Chen, Yu ;
Fu, Ming-Hui .
SMART MATERIALS AND STRUCTURES, 2017, 26 (10)
[13]   ANALYSIS OF ELASTIC-MODULUS OF CONVENTIONAL FOAMS AND OF REENTRANT FOAM MATERIALS WITH A NEGATIVE POISSONS RATIO [J].
CHOI, JB ;
LAKES, RS .
INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 1995, 37 (01) :51-59
[14]   Fracture toughness of re-entrant foam materials with a negative Poisson's ratio: Experiment and analysis [J].
Choi, JB ;
Lakes, RS .
INTERNATIONAL JOURNAL OF FRACTURE, 1996, 80 (01) :73-83
[15]   Topology Optimized Architectures with Programmable Poisson's Ratio over Large Deformations [J].
Clausen, Anders ;
Wang, Fengwen ;
Jensen, Jakob S. ;
Sigmund, Ole ;
Lewis, Jennifer A. .
ADVANCED MATERIALS, 2015, 27 (37) :5523-5527
[16]   Elastoplasticity of auxetic materials [J].
Dirrenberger, J. ;
Forest, S. ;
Jeulin, D. .
COMPUTATIONAL MATERIALS SCIENCE, 2012, 64 :57-61
[17]   Homogenization of periodic auxetic materials [J].
Dirrenberger, J. ;
Forest, S. ;
Jeulin, D. ;
Colin, C. .
11TH INTERNATIONAL CONFERENCE ON THE MECHANICAL BEHAVIOR OF MATERIALS (ICM11), 2011, 10 :1847-1852
[18]   Effective elastic properties of auxetic microstructures: anisotropy and structural applications [J].
Dirrenberger, Justin ;
Forest, Samuel ;
Jeulin, Dominique .
INTERNATIONAL JOURNAL OF MECHANICS AND MATERIALS IN DESIGN, 2013, 9 (01) :21-33
[19]  
Dong Z., 2020, MAT DES, V160, DOI [10.1080/17452759.2019.1644184, DOI 10.1080/17452759.2019.1644184]
[20]   Experimental and numerical studies on the compressive mechanical properties of the metallic auxetic reentrant honeycomb [J].
Dong, Zhichao ;
Li, Ying ;
Zhao, Tian ;
Wu, Wenwang ;
Xiao, Dengbao ;
Liang, Jun .
MATERIALS & DESIGN, 2019, 182