Automatic symbolic simplification of analog circuits in MATLAB using ant colony optimization

被引:0
作者
Shokouhifar, Mohammad [1 ]
Jalali, Ali [1 ]
机构
[1] Shahid Beheshti Univ, Dept Elect & Comp Engn, Tehran, Iran
来源
2014 22nd Iranian Conference on Electrical Engineering (ICEE) | 2014年
关键词
symbolic analysis; simplification; modified nodal analysis; ant colony optimization; INTEGRATED-CIRCUITS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we present a MATLAB program for automatic symbolic simplification of analog circuits containing MOSFETs, using modified nodal analysis (MNA) and ant colony optimization (ACO). At first, all MOSFETs are replaced by the corresponding small-signal models. Then, the circuit be analyzed by applying symbolic MNA, and the exact symbolic expression of the circuit behavior is generated. The derived exact symbolic expression then be simplified using ACO. In this paper, a new criterion was introduced to minimize the mean square error (MSE) between the exact expression and the simplified one. The main advantage of proposed criterion is that final simplification error rate is controllable by user. In this way, the gain and phase MSEs across different frequencies were considered to evaluate the solutions generated by artificial ants. It is remarkable that all processing containing netlist text processing, symbolic analysis, post-processing and simplification are consecutively derived in MATLAB. Comparing the obtained numerical results with HSPICE demonstrates the efficiently of proposed tool.
引用
收藏
页码:407 / 412
页数:6
相关论文
共 50 条
  • [31] Clustering social networks using ant colony optimization
    Supreet Reddy Mandala
    Soundar R. T. Kumara
    Calyampudi Radhakrishna Rao
    Reka Albert
    Operational Research, 2013, 13 : 47 - 65
  • [32] Credit rating prediction using Ant Colony Optimization
    Martens, D.
    Van Gestel, T.
    De Backer, M.
    Haesen, R.
    Vanthienen, J.
    Baesens, B.
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2010, 61 (04) : 561 - 573
  • [33] Unordered rule discovery using Ant Colony Optimization
    Khan, Salabat
    Baig, Abdul Rauf
    Ali, Armughan
    Haider, Bilal
    Khan, Farman Ali
    Durrani, Mehr Yahya
    Ishtiaq, Muhammad
    SCIENCE CHINA-INFORMATION SCIENCES, 2014, 57 (09) : 1 - 15
  • [34] Classification using unstructured rules and Ant Colony Optimization
    Nejad, Negar Zakeri
    Bakhtiary, Amir H.
    Analoui, Morteza
    IMECS 2008: INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS, VOLS I AND II, 2008, : 506 - +
  • [35] Unordered rule discovery using Ant Colony Optimization
    KHAN Salabat
    BAIG Abdul Rauf
    ALI Armughan
    HAIDER Bilal
    KHAN Farman Ali
    DURRANI Mehr Yahya
    ISHTIAQ Muhammad
    ScienceChina(InformationSciences), 2014, 57 (09) : 189 - 203
  • [36] Subdomain generation using emergent ant colony optimization
    Bahreininejad, A.
    Hesamfar, P.
    COMPUTERS & STRUCTURES, 2006, 84 (28) : 1719 - 1728
  • [37] Rescue Path Optimization Using Ant Colony Systems
    Graf, Manuela
    Poy, Marc
    Bischof, Simon
    Dornberger, Rolf
    Hanne, Thomas
    2017 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2017, : 3388 - 3394
  • [38] Optic Disc Detection Using Ant Colony Optimization
    Dias, Marcy A.
    Monteiro, Fernando C.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 798 - 801
  • [39] Solving Continuous Optimization Using Ant Colony Algorithm
    Chen, Ling
    Sun, Haiying
    Wang, Shu
    2009 SECOND INTERNATIONAL CONFERENCE ON FUTURE INFORMATION TECHNOLOGY AND MANAGEMENT ENGINEERING, FITME 2009, 2009, : 92 - 95
  • [40] Unordered rule discovery using Ant Colony Optimization
    Salabat Khan
    Abdul Rauf Baig
    Armughan Ali
    Bilal Haider
    Farman Ali Khan
    Mehr Yahya Durrani
    Muhammad Ishtiaq
    Science China Information Sciences, 2014, 57 : 1 - 15