Conducting wide band gap nc-Si/a-SiC:H films for window layers in nc-Si solar cells

被引:52
作者
Kar, Debjit [1 ]
Das, Debajyoti [1 ]
机构
[1] Indian Assoc Cultivat Sci, Energy Res Unit, Nanosci Grp, Kolkata 700032, India
关键词
AMORPHOUS-SILICON-CARBIDE; CHEMICAL-VAPOR-DEPOSITION; INDUCTIVELY-COUPLED PLASMA; HOT-WIRE CVD; NANOCRYSTALLINE SILICON; MICROCRYSTALLINE SILICON; GLOW-DISCHARGE; THIN-FILMS; LOW-TEMPERATURE; CARBON ALLOYS;
D O I
10.1039/c3ta12878d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Progressive development towards all-silicon solar cells insists on the top cell of the tandem structure having a wide band gap p-layer in the superstrate configuration. With the advent of nc-Si solar cells having improved stability, the efficient growth of an i-nc-Si layer of the top cell prefers a nc-p-layer as its substrate. Accordingly, a conducting crystalline silicon alloy material with a wide band gap is a basic requirement at the p-layer. The present investigation deals with the development of a nc-Si/a-SiC:H hetero-structure wherein Si-C bonds in an amorphous matrix widen the optical band gap and the embedded high density tiny Si ultranano-crystallites of mostly < 220 > crystallographic orientation provide high electrical conductivity as well as an enhanced optical band gap due to a quantum size effect. A typical nc-Si/a-SiC:H network is obtained that contains 47% crystallinity with a prevailing ultranano-crystalline component, [(X-C)(unc)/(X-C)(nc)] > 1, average crystallite size similar to 3.6 nm, number density similar to 1.2 x 10(13) cm(-2) and Si-C bond density similar to 1.2 x 10(22) cm(-3). The hetero-structure contributes a wide optical band gap, E-g similar to 2.07 eV, high conductivity, sigma(D) similar to 3 x 10(-10) S cm(-1), sigma(Ph) similar to 6 x 10(-8) S cm(-1), Ea similar to 0.73 eV and a very low microstructure factor R similar to 0.075. Imminent steps for doping will indeed lead to prospective window layers in nc-Si solar cells.
引用
收藏
页码:14744 / 14753
页数:10
相关论文
共 60 条
[1]   Characteristics of p-type nanocrystalline silicon thin films developed for window layer of solar cells [J].
Adhikary, Koel ;
Ray, Swati .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2007, 353 (22-23) :2289-2294
[2]   Microcrystalline to nanocrystalline silicon phase transition in hydrogenated silicon-carbon alloy films [J].
Basa, D. K. ;
Ambrosone, G. ;
Coscia, U. .
NANOTECHNOLOGY, 2008, 19 (41)
[3]   ANNEALING AND CRYSTALLIZATION PROCESSES IN A HYDROGENATED AMORPHOUS SI-C ALLOY FILM [J].
BASA, DK ;
SMITH, FW .
THIN SOLID FILMS, 1990, 192 (01) :121-133
[4]   Structural studies on the microcrystallization of Si:H network developed by hot-wire CVD [J].
Chakraborty, K ;
Das, D .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2006, 90 (7-8) :849-863
[5]   Development of microcrystalline silicon carbide window layers by hot-wire CVD and their applications in microcrystalline silicon thin film solar cells [J].
Chen, Tao ;
Huang, Yuelong ;
Yang, Deren ;
Carius, Reinhard ;
Finger, Friedhelm .
THIN SOLID FILMS, 2011, 519 (14) :4523-4526
[6]   Single-step, rapid low-temperature synthesis of Si quantum dots embedded in an amorphous SiC matrix in high-density reactive plasmas [J].
Cheng, Qijin ;
Xu, Shuyan ;
Ostrikov, Kostya .
ACTA MATERIALIA, 2010, 58 (02) :560-569
[7]   High-rate, low-temperature synthesis of composition controlled hydrogenated amorphous silicon carbide films in low-frequency inductively coupled plasmas [J].
Cheng, Qijin ;
Xu, S. ;
Long, J. D. ;
Ni, Z. H. ;
Rider, A. E. ;
Ostrikov, K. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2008, 41 (05)
[8]   Effect of gas flow rates on PECVD-deposited nanocrystalline silicon thin film and solar cell properties [J].
Chowdhury, Amartya ;
Mukhopadhyay, Sumita ;
Ray, Swati .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2008, 92 (04) :385-392
[9]   Preparation of microcrystalline silicon-carbon films [J].
Coscia, U ;
Ambrosone, G ;
Lettieri, S ;
Maddalena, P ;
Rigato, V ;
Restello, S ;
Bobeico, E ;
Tucci, M .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2005, 87 (1-4) :433-444
[10]   Power density effects on the growth of microcrystalline silicon-carbon alloys by PECVD [J].
Coscia, U ;
Ambrosone, G ;
Lettieri, S ;
Maddalena, P ;
Rava, P ;
Minarini, C .
THIN SOLID FILMS, 2003, 427 (1-2) :284-288