Spatial behavior of anomalous transport

被引:43
作者
Margolin, G [1 ]
Berkowitz, B [1 ]
机构
[1] Weizmann Inst Sci, Dept Environm Sci & Energy Res, IL-76100 Rehovot, Israel
来源
PHYSICAL REVIEW E | 2002年 / 65卷 / 03期
关键词
D O I
10.1103/PhysRevE.65.031101
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a general derivation of one-dimensional spatial concentration distributions for anomalous transport regimes. Such transport can be captured in the framework of a continuous time random walk with a broad transition time distribution. This general theory includes a Fokker-Planck equation as a particular limiting case. All of the concentration profiles, as well as the associated temporal first passage time distributions, can be written in terms of a single special function (that belongs to the class of Fox functions). In addition, we consider the first two moments of the spatial concentration distributions, and determine not only their scaling behavior with time but also the coefficients and correction terms.
引用
收藏
页码:1 / 031101
页数:11
相关论文
共 22 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]   Anomalous transport in laboratory-scale, heterogeneous porous media [J].
Berkowitz, B ;
Scher, H ;
Silliman, SE .
WATER RESOURCES RESEARCH, 2000, 36 (01) :149-158
[3]   Theory of anomalous chemical transport in random fracture networks [J].
Berkowitz, B ;
Scher, H .
PHYSICAL REVIEW E, 1998, 57 (05) :5858-5869
[4]   Application of continuous time random walk theory to tracer test measurements in fractured and heterogeneous porous media [J].
Berkowitz, B ;
Kosakowski, G ;
Margolin, G ;
Scher, H .
GROUND WATER, 2001, 39 (04) :593-604
[5]  
BERKOWITZ B, UNPUB
[6]   FOX FUNCTION REPRESENTATION OF NON-DEBYE RELAXATION PROCESSES [J].
GLOCKLE, WG ;
NONNENMACHER, TF .
JOURNAL OF STATISTICAL PHYSICS, 1993, 71 (3-4) :741-757
[7]   PROBABILITY-DISTRIBUTIONS FOR CONTINUOUS-TIME RANDOM-WALKS WITH LONG TAILS [J].
KLAFTER, J ;
ZUMOFEN, G .
JOURNAL OF PHYSICAL CHEMISTRY, 1994, 98 (30) :7366-7370
[8]   Analysis of field observations of tracer transport in a fractured till [J].
Kosakowski, G ;
Berkowitz, B ;
Scher, H .
JOURNAL OF CONTAMINANT HYDROLOGY, 2001, 47 (01) :29-51
[9]  
Margolin G, 2000, J PHYS CHEM B, V104, P8762
[10]   Application of continuous time random walks to transport in porous media [J].
Margolin, G ;
Berkowitz, B .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (16) :3942-3947