A local lifting theorem for subnormal operators

被引:2
作者
Majdak, W
Sebestyén, Z
Stochel, J
Thomson, JE
机构
[1] AGH Sci & Technol Univ, Fac Appl Math, PL-30059 Krakow, Poland
[2] Eotvos Lorand Univ, Dept Appl Anal, H-1117 Budapest, Hungary
[3] Jagiellonian Univ, Inst Matemat, PL-30059 Krakow, Poland
[4] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
关键词
subnormal operator; minimal normal extension; star-cyclic minimal normal extension; lift of intertwining operator; lifting commutant theorem;
D O I
10.1090/S0002-9939-05-08158-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Criteria for the existence of lifts of operators intertwining subnormal operators are established. The main result of the paper reduces lifting questions for general subnormal operators to questions about lifts of cyclic subnormal operators. It is shown that in general the existence of local lifts (i.e. those coming from cyclic parts) for a pair of subnormal operators does not imply the existence of a global lift. However this is the case when minimal normal extensions of subnormal operators in question are star-cyclic.
引用
收藏
页码:1687 / 1699
页数:13
相关论文
共 23 条
[1]  
[Anonymous], ANN POLON MATH
[2]  
Berg C., 1984, HARMONIC ANAL SEMIGR
[3]   SUBNORMAL OPERATORS [J].
BRAM, J .
DUKE MATHEMATICAL JOURNAL, 1955, 22 (01) :75-94
[4]  
CONWAY JB, 1991, MATH SURVEYS MONOGRA
[5]  
Conway JB., 2007, Graduate Texts in Mathematics, DOI [10.1007/978-1-4757-4383-8, DOI 10.1007/978-1-4757-4383-8]
[6]  
DEDDENS JA, 1971, MICH MATH J, V18, P243
[7]  
EMBRY MR, 1973, ACTA SCI MATH, V35, P61
[8]  
Embry-Wardrop M., 1981, HOUSTON J MATH, V7, P191
[9]   SUBNORMAL WEIGHTED SHIFTS AND HALMOS-BRAM CRITERION [J].
GELLAR, R ;
WALLEN, LJ .
PROCEEDINGS OF THE JAPAN ACADEMY, 1970, 46 (04) :375-&
[10]  
Halmos P.R., 1967, A Hilbert Space Problem Book