Z-Score Linear Discriminant Analysis for EEG Based Brain-Computer Interfaces

被引:59
作者
Zhang, Rui [1 ]
Xu, Peng [1 ]
Guo, Lanjin [1 ]
Zhang, Yangsong [1 ]
Li, Peiyang [1 ]
Yao, Dezhong [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Life Sci & Technol, Minist Educ, Key Lab NeuroInformat, Chengdu 610054, Peoples R China
关键词
SPATIAL-PATTERNS; BCI; SYSTEM; CLASSIFICATION; POTENTIALS; ALGORITHMS; SIGNAL;
D O I
10.1371/journal.pone.0074433
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Linear discriminant analysis (LDA) is one of the most popular classification algorithms for brain-computer interfaces (BCI). LDA assumes Gaussian distribution of the data, with equal covariance matrices for the concerned classes, however, the assumption is not usually held in actual BCI applications, where the heteroscedastic class distributions are usually observed. This paper proposes an enhanced version of LDA, namely z-score linear discriminant analysis (Z-LDA), which introduces a new decision boundary definition strategy to handle with the heteroscedastic class distributions. Z-LDA defines decision boundary through z-score utilizing both mean and standard deviation information of the projected data, which can adaptively adjust the decision boundary to fit for heteroscedastic distribution situation. Results derived from both simulation dataset and two actual BCI datasets consistently show that Z-LDA achieves significantly higher average classification accuracies than conventional LDA, indicating the superiority of the new proposed decision boundary definition strategy.
引用
收藏
页数:7
相关论文
共 38 条
[1]  
[Anonymous], 2003, Statistical pattern recognition
[2]  
[Anonymous], 2006, PATTERN RECOGN
[3]  
[Anonymous], 2011, ACM T INTEL SYST TEC
[4]   A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals [J].
Bashashati, Ali ;
Fatourechi, Mehrdad ;
Ward, Rabab K. ;
Birch, Gary E. .
JOURNAL OF NEURAL ENGINEERING, 2007, 4 (02) :R32-R57
[5]   Using a Hybrid Brain Computer Interface and Virtual Reality System to Monitor and Promote Cortical Reorganization through Motor Activity and Motor Imagery Training [J].
Bermudez i Badia, S. ;
Garcia Morgade, A. ;
Samaha, H. ;
Verschure, P. F. M. J. .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2013, 21 (02) :174-181
[6]   The BCI competition III:: Validating alternative approaches to actual BCI problems [J].
Blankertz, Benjamin ;
Mueller, Klaus-Robert ;
Krusienski, Dean J. ;
Schalk, Gerwin ;
Wolpaw, Jonathan R. ;
Schloegl, Alois ;
Pfurtscheller, Gert ;
Millan, Jose D. R. ;
Schroeder, Michael ;
Birbaumer, Niels .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2006, 14 (02) :153-159
[7]   BCI competition 2003 - Data sets Ib and IIb: Feature extraction from event-related brain potentials with the continuous wavelet transform and the t-value scalogram [J].
Bostanov, V .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2004, 51 (06) :1057-1061
[8]   Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke [J].
Buch, Ethan ;
Weber, Cornelia ;
Cohen, Leonardo G. ;
Braun, Christoph ;
Dimyan, Michael A. ;
Ard, Tyler ;
Mellinger, Jurgen ;
Caria, Andrea ;
Soekadar, Surjo ;
Fourkas, Alissa ;
Birbaumer, Niels .
STROKE, 2008, 39 (03) :910-917
[9]   Non-invasive brain-computer interface system: Towards its application as assistive technology [J].
Cincotti, Febo ;
Mattia, Donatella ;
Aloise, Fabio ;
Bufalari, Simona ;
Schalk, Gerwin ;
Oriolo, Giuseppe ;
Cherubini, Andrea ;
Marciani, Maria Grazia ;
Babiloni, Fabio .
BRAIN RESEARCH BULLETIN, 2008, 75 (06) :796-803
[10]   SUPPORT-VECTOR NETWORKS [J].
CORTES, C ;
VAPNIK, V .
MACHINE LEARNING, 1995, 20 (03) :273-297