A hybrid Hermite-discontinuous Galerkin method for hyperbolic systems with application to Maxwell's equations

被引:14
作者
Chen, Xi [1 ]
Appeloe, Daniel [2 ]
Hagstrom, Thomas [3 ]
机构
[1] Univ Arizona, Coll Opt Sci, ACMS, Tucson, AZ 85721 USA
[2] Univ New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA
[3] So Methodist Univ, Dept Math, Dallas, TX 75275 USA
关键词
Hyperbolic initial-boundary value problems; Spectral elements; Hybrid grids; BOUNDARY VALUE-PROBLEMS; DIFFERENCE TIME-DOMAIN; GRIDS;
D O I
10.1016/j.jcp.2013.09.046
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A high order discretization strategy for solving hyperbolic initial-boundary value problems on hybrid structured-unstructured grids is proposed. The method leverages the capabilities of two distinct families of polynomial elements: discontinuous Galerkin discretizations which can be applied on elements of arbitrary shape, and Hermite discretizations which allow highly efficient implementations on staircased Cartesian grids. We demonstrate through numerical experiments in 1 + 1 and 2 + 1 dimensions that the hybridized method is stable and efficient. (C) 2013 Published by Elsevier Inc.
引用
收藏
页码:501 / 520
页数:20
相关论文
共 24 条
[1]   On the removal of boundary errors caused by Runge-Kutta integration of nonlinear partial differential equations [J].
Abarbanel, S ;
Gottlieb, D ;
Carpenter, MH .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1996, 17 (03) :777-782
[2]  
[Anonymous], 1996, PRACTICAL GUIDE PSEU
[3]  
Appelo D., PAC J APPL MATH, V4, P125
[4]  
Butcher JC., 1987, The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods
[5]   P-ADAPTIVE HERMITE METHODS FOR INITIAL VALUE PROBLEMS [J].
Chen, Ronald ;
Hagstrom, Thomas .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2012, 46 (03) :545-557
[6]  
Collatz L., 1960, The Numerical Treatment of Differential Equations
[7]   A locally conformal finite-difference time-domain (FDTD) algorithm for modeling three-dimensional perfectly conducting objects [J].
Dey, S ;
Mittra, R .
IEEE MICROWAVE AND GUIDED WAVE LETTERS, 1997, 7 (09) :273-275
[8]   Convergent Cartesian grid methods for Maxwell's equations in complex geometries [J].
Ditkowski, A ;
Dridi, K ;
Hesthaven, JS .
JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 170 (01) :39-80
[9]   Improving accuracy by subpixel smoothing in the finite-difference time domain [J].
Farjadpour, A. ;
Roundy, David ;
Rodriguez, Alejandro ;
Ibanescu, M. ;
Bermel, Peter ;
Joannopoulos, J. D. ;
Johnson, Steven G. ;
Burr, G. W. .
OPTICS LETTERS, 2006, 31 (20) :2972-2974
[10]  
Goodrich J, 2006, MATH COMPUT, V75, P595, DOI 10.1090/S0025-5718-05-01808-9