A hybrid Hermite-discontinuous Galerkin method for hyperbolic systems with application to Maxwell's equations

被引:14
作者
Chen, Xi [1 ]
Appeloe, Daniel [2 ]
Hagstrom, Thomas [3 ]
机构
[1] Univ Arizona, Coll Opt Sci, ACMS, Tucson, AZ 85721 USA
[2] Univ New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA
[3] So Methodist Univ, Dept Math, Dallas, TX 75275 USA
关键词
Hyperbolic initial-boundary value problems; Spectral elements; Hybrid grids; BOUNDARY VALUE-PROBLEMS; DIFFERENCE TIME-DOMAIN; GRIDS;
D O I
10.1016/j.jcp.2013.09.046
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A high order discretization strategy for solving hyperbolic initial-boundary value problems on hybrid structured-unstructured grids is proposed. The method leverages the capabilities of two distinct families of polynomial elements: discontinuous Galerkin discretizations which can be applied on elements of arbitrary shape, and Hermite discretizations which allow highly efficient implementations on staircased Cartesian grids. We demonstrate through numerical experiments in 1 + 1 and 2 + 1 dimensions that the hybridized method is stable and efficient. (C) 2013 Published by Elsevier Inc.
引用
收藏
页码:501 / 520
页数:20
相关论文
共 24 条
  • [1] On the removal of boundary errors caused by Runge-Kutta integration of nonlinear partial differential equations
    Abarbanel, S
    Gottlieb, D
    Carpenter, MH
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1996, 17 (03) : 777 - 782
  • [2] [Anonymous], 1996, PRACTICAL GUIDE PSEU
  • [3] Appelo D., PAC J APPL MATH, V4, P125
  • [4] Butcher JC., 1987, The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods
  • [5] P-ADAPTIVE HERMITE METHODS FOR INITIAL VALUE PROBLEMS
    Chen, Ronald
    Hagstrom, Thomas
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2012, 46 (03): : 545 - 557
  • [6] Collatz L., 1960, The Numerical Treatment of Differential Equations
  • [7] A locally conformal finite-difference time-domain (FDTD) algorithm for modeling three-dimensional perfectly conducting objects
    Dey, S
    Mittra, R
    [J]. IEEE MICROWAVE AND GUIDED WAVE LETTERS, 1997, 7 (09): : 273 - 275
  • [8] Convergent Cartesian grid methods for Maxwell's equations in complex geometries
    Ditkowski, A
    Dridi, K
    Hesthaven, JS
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 170 (01) : 39 - 80
  • [9] Improving accuracy by subpixel smoothing in the finite-difference time domain
    Farjadpour, A.
    Roundy, David
    Rodriguez, Alejandro
    Ibanescu, M.
    Bermel, Peter
    Joannopoulos, J. D.
    Johnson, Steven G.
    Burr, G. W.
    [J]. OPTICS LETTERS, 2006, 31 (20) : 2972 - 2974
  • [10] Goodrich J, 2006, MATH COMPUT, V75, P595, DOI 10.1090/S0025-5718-05-01808-9