REGULARITY FOR SOLUTIONS TO NONLINEAR ELLIPTIC EQUATIONS

被引:0
作者
Greco, Luigi [1 ]
Moscariello, Gioconda [1 ]
Zecca, Gabriella [1 ]
机构
[1] Univ Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, I-80126 Naples, Italy
关键词
LOWER-ORDER TERMS; SPACES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega be a domain of R-N, N > 2. We establish higher integrability for solutions u is an element of W-loc(1,p) (Omega) of nonlinear PDEs whose prototype is div[vertical bar del u vertical bar(p-2)del u+B(x)vertical bar u vertical bar(p-2)u] = div(vertical bar F vertical bar Fp-2) with 1 < p < N. We assume that the vector field B: Omega -> R-N belongs N to the Marcinkiewicz space L-N/p-1,L-infinity. We prove that F is an element of L-loc(T)(Omega, R-N) p < r < N, implies u is an element of L-loc(r) (Omega).
引用
收藏
页码:1105 / 1113
页数:9
相关论文
共 15 条
  • [1] Alvino A., 1977, B UNIONE MAT ITAL, V14, P148
  • [2] [Anonymous], INTERPOLATION OPERAT
  • [3] [Anonymous], 2003, DIRECT METHODS CALCU, DOI DOI 10.1142/5002
  • [4] Boccardo L., 2012, Bollettino della Unione Matematica Italiana, V5, P357
  • [5] Carozza M., 1997, Differential and Integral Equations, V10, P599, DOI DOI 10.57262/DIE/1367438633
  • [6] Giannetti F, 2013, DIFFER INTEGRAL EQU, V26, P623
  • [7] An embedding theorem in Lorentz-Zygmund spaces
    Greco, L
    Moscariello, G
    [J]. POTENTIAL ANALYSIS, 1996, 5 (06) : 581 - 590
  • [8] Ladyzhenskaya O.A., 1968, MATH SCI ENG, V46
  • [9] SOME RESULTS ON REGULARITY FOR SOLUTIONS OF NONLINEAR ELLIPTIC SYSTEMS AND QUASI-REGULAR FUNCTIONS
    MEYERS, NG
    ELCRAT, A
    [J]. DUKE MATHEMATICAL JOURNAL, 1975, 42 (01) : 121 - 136
  • [10] Mingione G, 2007, ANN SCUOLA NORM-SCI, V6, P195